• Berg, W., C. Kummerow, and C. A. Morales. 2002. Differences between east and west Pacific rainfall systems. J. Climate 15:36593672.

  • Bister, M. and K. A. Emanuel. 1997. The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev 125:26622682.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J. and E. J. Zipser. 1999. Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev 127:103123.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J. and E. J. Zipser. 2002. Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev 130:785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt. 2002. Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev 130:769784.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. and R. A. Houze Jr.. 1979. The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon. Wea. Rev 107:13701381.

    • Search Google Scholar
    • Export Citation
  • Chong, M. and J. Testud. 1983. Three-dimensional wind field analysis from dual-Doppler radar data. Part III: The boundary condition: An optimum determination based on a variational concept. J. Climate Appl. Meteor 22:12271241.

    • Search Google Scholar
    • Export Citation
  • Chong, M. and D. Hauser. 1989. A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev 117:728744.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D. and R. A. Houze Jr.. 1984. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci 41:933960.

    • Search Google Scholar
    • Export Citation
  • Geerts, B. and Y. Dawei. 2004. Classification and characterization of tropical precipitation based on high-resolution airborne vertical incidence radar. Part I: Classification. J. Appl. Meteor 43:15541566.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., G. M. Heymsfield, L. Tian, J. B. Halverson, A. Guillory, and M. I. Mejia. 2000. Hurricane Georges' landfall in the Dominican Republic: Detailed airborne Doppler radar imagery. Bull. Amer. Meteor. Soc 81:9991018.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., R. A. Houze Jr., and D. D. Churchill. 1990. Convective and stratiform components of a winter monsoon cloud cluster determined from geosynchronous IR satellite data. J. Meteor. Soc. Japan 68:3763.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J. and H. Christian. 1993. Global observations of lightning. Atlas of Satellite Observations Related to Global Change, R. J. Gurney, J. L. Foster, and C. L. Parkinson, Eds., Cambridge University Press, 191–219.

    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams. 2002. Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev 130:14931509.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M. Coauthors, 1996. The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol 13:795809.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. 1993. Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc 78:21792196.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., F. D. Marks, and R. A. Black. 1992. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci 49:943963.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert. 1999. Trimodal characteristics of tropical convection. J. Climate 12:23972418.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P. 1984. Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci 41:12681286.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P. and M. A. LeMone. 1989. Vertically velocity characteristics of oceanic convection. J. Atmos. Sci 46:621640.

  • Kingsmill, D. E. 1995. Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev 123:29132933.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., I. M. Hakkarinen, H. F. Pierce, and J. A. Weinman. 1991. Determination of precipitation profiles from airborne passive microwave radiometric measurements. J. Atmos. Oceanic Technol 8:148158.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. Coauthors, 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor 39:19651982.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A. 1984. Precipitation structure of the cloud clusters in a tropical easterly wave. Mon. Wea. Rev 112:313325.

  • Lucas, C., E. J. Zipser, and M. A. LeMone. 1994. Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci 51:31833193.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D. 1985. Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev 113:909930.

  • Marks, F. D. and R. A. Houze Jr.. 1987. Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci 44:12961317.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I. and E. J. Zipser. 1996. Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc 77:11791190.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser. 1999. The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor 38:596606.

    • Search Google Scholar
    • Export Citation
  • NASDA, 1999. TRMM PR algorithm instruction manual V1.0. Communications Research Laboratory, 52 pp. [Available from Communications Research Laboratory, 4-2-1 Nukui-kitamachi, Koganei-chi, Tokyo 184, Japan.].

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W. and E. J. Zipser. 2003. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate 16:14561475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil. 2000. A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate 13:40874106.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E. and R. W. Henderson. 1986. Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev 114:26402653.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A. and S. A. Rutledge. 2001. Regional variability in tropical convection: Observations from TRMM. J. Climate 14:35663586.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge. 2002. TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate 15:12781294.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W. 1999. Prevalence of precipitation from warm-topped clouds over eastern Asia and the western Pacific. J. Climate 12:220229.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M. and S. A. Rutledge. 1998. Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci 55:27152729.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. N. Ferreira, J. B. Halverson, D. L. Herdies, and M. A. F. Silva Dias. 2002. Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J. Geophys. Res.,107, 8040, doi:10.1029/2000JD000263.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. and R. A. Houze Jr.. 2003a. Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate 16:17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. and R. A. Houze Jr.. 2003b. The TRMM precipitation radar's view of shallow, isolated rain. J. Appl. Meteor 42:15191524.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele. 1997. Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc 78:28172836.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., R. E. Hood, F. J. LaFontaine, E. A. Smith, R. Platt, J. Galliano, V. L. Griffin, and E. Lobl. 1994. High-resolution imaging of rain systems with the Advanced Microwave Precipitation Radiometer. J. Atmos. Oceanic Technol 11:849857.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze, and S. E. Yuter. 1995. Climatological characterization of three-dimensional storm structure from operational radar and rainguage data. J. Appl. Meteor 34:19782007.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. L. Gage. 1999. Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor 38:302320.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt. 2002. Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev 130:802824.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage. 1995. Classification of precipitating clouds in the Tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol 12:9961012.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach. 1992. A radar and electrical study of tropical “hot towers.”. J. Atmos. Sci 49:13861396.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg. 1984. Stationary and moving convective bands in hurricanes. J. Atmos. Sci 41:31893211.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. and R. A. Houze. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev 123:19411963.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. and R. A. Houze. 1998. The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc 124:5399.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J. and M. A. LeMone. 1980. Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci 37:24582469.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 24 2
PDF Downloads 29 17 0

Classification and Characterization of Tropical Precipitation Based on High-Resolution Airborne Vertical Incidence Radar. Part II: Composite Vertical Structure of Hurricanes versus Storms over Florida and the Amazon

View More View Less
  • 1 University of Wyoming, Laramie, Wyoming
Restricted access

Abstract

High-resolution airborne measurements of vertical incidence radar reflectivity and Doppler velocity, as well as coincident upwelling 85-GHz radiances, are analyzed for several Atlantic Ocean hurricanes and for numerous convection-generated systems in Florida and Amazonia. Characteristic reflectivity, hydrometeor motion, and vertical air motion profiles of convective and stratiform precipitation are compared and related to their ice-scattering signature, with an emphasis on the difference between hurricanes and convection-generated storms. Hurricanes are found to be largely and clearly stratiform, displaying a remarkably narrow echo and vertical velocity spectrum. Air currents are inferred to be rising steadily at all levels, even in stratiform regions. Land-based, convection-generated stratiform regions tend to experience low-level descent and mid- to upper-level ascent, although the vertical velocity variability is large. Florida storms produce little stratiform precipitation. Their spectrum of echo and updraft strengths is broad, including some of the highest reflectivities aloft, resulting in very low 85-GHz radiances. Amazonian storms are relatively weak and are more “maritime” in echo, vertical velocity, and ice-scattering characteristics, when compared with those in Florida, especially during a westerly low-level wind regime.

Corresponding author address: Dr. Bart Geerts, Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. geerts@uwyo.edu

Abstract

High-resolution airborne measurements of vertical incidence radar reflectivity and Doppler velocity, as well as coincident upwelling 85-GHz radiances, are analyzed for several Atlantic Ocean hurricanes and for numerous convection-generated systems in Florida and Amazonia. Characteristic reflectivity, hydrometeor motion, and vertical air motion profiles of convective and stratiform precipitation are compared and related to their ice-scattering signature, with an emphasis on the difference between hurricanes and convection-generated storms. Hurricanes are found to be largely and clearly stratiform, displaying a remarkably narrow echo and vertical velocity spectrum. Air currents are inferred to be rising steadily at all levels, even in stratiform regions. Land-based, convection-generated stratiform regions tend to experience low-level descent and mid- to upper-level ascent, although the vertical velocity variability is large. Florida storms produce little stratiform precipitation. Their spectrum of echo and updraft strengths is broad, including some of the highest reflectivities aloft, resulting in very low 85-GHz radiances. Amazonian storms are relatively weak and are more “maritime” in echo, vertical velocity, and ice-scattering characteristics, when compared with those in Florida, especially during a westerly low-level wind regime.

Corresponding author address: Dr. Bart Geerts, Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. geerts@uwyo.edu

Save