• Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown. 2002. Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc 83:521536.

    • Search Google Scholar
    • Export Citation
  • ASHRAE, 1967. Handbook of Fundamentals. ASHRAE, 544 pp.

  • Bélair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson. 1999. An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl. Meteor 38:14991518.

    • Search Google Scholar
    • Export Citation
  • Berman, S., J-Y. Ku, and S. T. Rao. 1999. Spatial and temporal variation in the mixing depth over the northeastern United States during the summer of 1995. J. Appl. Meteor 38:16611673.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P. and P. Lacarrère. 1989. Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev 117:18721890.

    • Search Google Scholar
    • Export Citation
  • Brown, M. J. 2000. Urban parameterizations for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, Z. Boybeyi, Ed., Wessex Press,. 193255.

    • Search Google Scholar
    • Export Citation
  • Brown, M. J. and M. D. Williams. 1998. An urban canopy parameterization for mesoscale models. Preprints, Second Urban Environment Symp., Albuquerque, NM, Amer. Meteor. Soc., 144–147.

    • Search Google Scholar
    • Export Citation
  • Burian, S. J., M. J. Brown, and S. P. Velugubantla. 2002. Building height characteristics in three U.S. cities. Preprints, Fourth Symp. on Urban Environment, Norfolk, VA, Amer. Meteor. Soc., 129– 130.

    • Search Google Scholar
    • Export Citation
  • Byun, D. W. and S. P. S. Arya. 1986. A study of mixed layer momentum evolution. Atmos. Environ 20:715728.

  • Chen, F. and J. Dudhia. 2001. Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev 129:587604.

    • Search Google Scholar
    • Export Citation
  • Chin, H. S., M. L. Leach, and M. J. Brown. 2000. A sensitivity study of the urban effect on a regional scale model: An idealized case. Preprints, Third Symp. on Urban Environments, Davis, CA, Amer. Meteor. Soc., 76–77.

    • Search Google Scholar
    • Export Citation
  • Christen, A., R. Vogt, M. W. Rotach, and E. Parlow. 2002. First results from BUBBLE I: Profiles of fluxes in the urban roughness sublayer. Preprints, Fourth Symp. on Urban Environments, Norfolk, VA, Amer. Meteor. Soc., 105–106.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci 46:30773107.

    • Search Google Scholar
    • Export Citation
  • Dupont, S. 2001. Modélisation dynamique et thermodynamique de la canopée urbaine: Réalisation du modèle de sols urbains pour SUBMESO (Dynamic and thermodynamic modeling of the urban canopy: Development of the urban soil model for SUBMESO). Ph.D. thesis, ECN-Université de Nantes, France, 319 pp.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., T. Otte, A. Lacser, and J. Ching. 2003. Using MM5 to simulate the meteorological fields at neighborhood scales. Proc. Fourth Int. Conf. on Urban Air Quality: Measurements, Modelling, and Management, Prague, Czech Republic, Institute of Physics, 428– 431.

    • Search Google Scholar
    • Export Citation
  • Ellefsen, R. 1991. Mapping and measuring buildings in the canopy boundary layer in ten U.S. cities. Energy Build 16:10251049.

  • Grell, G., J. Dudhia, and D. R. Stauffer. 1994. A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B. and T. R. Oke. 1995. Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. J. Appl. Meteor 34:873889.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B. and T. R. Oke. 1999a. Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor 38:922940.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B. and T. R. Oke. 1999b. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor 38:12621292.

    • Search Google Scholar
    • Export Citation
  • Kastner-Klein, P., E. Fedorovich, and M. W. Rotach. 2001. A wind tunnel study of organised and turbulent air motions in urban street canyons. J. Wind. Eng. Ind. Aerodyn 89:849861.

    • Search Google Scholar
    • Export Citation
  • Martilli, A. 2002. Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor 41:12471266.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach. 2002. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor 104:261304.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T. 1999. Surface and inlet boundary conditions for the simulation of turbulent boundary layer over complex rough surfaces. J. Wind. Eng. Ind. Aerodyn 81:311322.

    • Search Google Scholar
    • Export Citation
  • Masson, V. 2000. A physically-based scheme for the urban energy budget. Bound.-Layer Meteor 94:357397.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res 102:1666316682.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R. 1995. The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, J. E. Cermak et al., Eds., Kluwer Academic, 81–107.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A. 1984. Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Ratti, C., S. Di Sabatino, R. E. Britter, M. J. Brown, F. Caton, and S. Burian. 2002. Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities. Water Air Soil Pollut. Focus 2:459469.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc 124B:10711107.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W. 1999. On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos. Environ 33:40014008.

  • Rotach, M. W. 2001. Simulation of urban-scale dispersion using a Lagrangian stochastic dispersion model. Bound.-Layer Meteor 99:379410.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., B. Fisher, and M. Piringer. 2002. COST 715 workshop on urban boundary layer parameterizations. Bull. Amer. Meteor. Soc 83:15011504.

    • Search Google Scholar
    • Export Citation
  • Roth, M. 2000. Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc 126:941990.

  • Sailor, D. J. 1995. Simulated urban climate response to modifications in surface albedo and vegetative cover. J. Appl. Meteor 34:16941704.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J. and H. Fan. 2002. Modeling the diurnal variability of effective albedo for cities. Atmos. Environ 36:713725.

  • Seaman, N. L. and S. A. Michelson. 2000. Mesoscale meteorological structure of a high-ozone episode during the 1995 NARSTO-Northeast study. J. Appl. Meteor 39:384398.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno. 2000. Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteor 39:412426.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R. and N. L. Seaman. 1990. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev 118:12501277.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R. and N. L. Seaman. 1994. Multiscale four-dimensional data assimilation. J. Appl. Meteor 33:416434.

  • Taha, H. 1999. Modifying a mesoscale model to better incorporate urban heat storage: A bulk parameterization approach. J. Appl. Meteor 38:466473.

    • Search Google Scholar
    • Export Citation
  • Uno, I., H. Ueda, and S. Wakamatsu. 1989. Numerical modeling of the nocturnal urban boundary layer. Bound.-Layer Meteor 49:7798.

  • Voogt, J. A. and C. S. B. Grimmond. 2000. Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J. Appl. Meteor 39:16791699.

    • Search Google Scholar
    • Export Citation
  • Vu, T. C., Y. Ashie, and T. Asaeda. 2002. A k–ε turbulence closure model for the atmospheric boundary layer including urban canopy. Bound.-Layer Meteor 102:459490.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc 63:13091313.

  • Xiu, A. and J. E. Pleim. 2001. Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor 40:192209.

    • Search Google Scholar
    • Export Citation
  • Yamada, T. 1982. A numerical model study of turbulent airflow in and above a forest canopy. J. Meteor. Soc., Japan 60:439454.

  • Zhang, D-L. and R. A. Anthes. 1982. A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor 21:15941609.

    • Search Google Scholar
    • Export Citation
  • Zhang, K. Coauthors, 2001. Numerical investigation of boundary-layer evolution and nocturnal low-level jets: Local versus non-local PBL schemes. Environ. Fluid Mech 1:171208.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 482 203 14
PDF Downloads 206 93 8

Implementation of an Urban Canopy Parameterization in a Mesoscale Meteorological Model

View More View Less
  • a Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, Research Triangle Park, North Carolina
  • | b Israel Institute for Biological Research, Ness Ziona, Israel
  • | c Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, Research Triangle Park, North Carolina
Restricted access

Abstract

An urban canopy parameterization (UCP) is implemented into the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) to improve meteorological fields in the urban boundary layer for finescale (∼1-km horizontal grid spacing) simulations. The UCP uses the drag-force approach for dynamics and a simple treatment of the urban thermodynamics to account for the effects of the urban environment. The UCP is evaluated using a real-data application for Philadelphia, Pennsylvania. The simulations show that the UCP produces profiles of wind speed, friction velocity, turbulent kinetic energy, and potential temperature that are more consistent with the observations taken in urban areas and data from idealized wind tunnel studies of urban areas than do simulations that use the roughness approach. In addition, comparisons with meteorological measurements show that the UCP simulations are superior to those that use the roughness approach. This improvement of the treatment of the urban areas in the meteorological model could have implications for simulating air chemistry processes at this scale.

On assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Current affiliation: INRA-EPHYSE, Villenauve d'Ornon, France

Corresponding author address: Tanya L. Otte, EPA/NERL/AMD, Mail Drop E243-03, Research Triangle Park, NC 27711. otte.tanya@epa.gov

Abstract

An urban canopy parameterization (UCP) is implemented into the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) to improve meteorological fields in the urban boundary layer for finescale (∼1-km horizontal grid spacing) simulations. The UCP uses the drag-force approach for dynamics and a simple treatment of the urban thermodynamics to account for the effects of the urban environment. The UCP is evaluated using a real-data application for Philadelphia, Pennsylvania. The simulations show that the UCP produces profiles of wind speed, friction velocity, turbulent kinetic energy, and potential temperature that are more consistent with the observations taken in urban areas and data from idealized wind tunnel studies of urban areas than do simulations that use the roughness approach. In addition, comparisons with meteorological measurements show that the UCP simulations are superior to those that use the roughness approach. This improvement of the treatment of the urban areas in the meteorological model could have implications for simulating air chemistry processes at this scale.

On assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Current affiliation: INRA-EPHYSE, Villenauve d'Ornon, France

Corresponding author address: Tanya L. Otte, EPA/NERL/AMD, Mail Drop E243-03, Research Triangle Park, NC 27711. otte.tanya@epa.gov

Save