• Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley. 1998. Determination of clear sky from clouds with MODIS. J. Geophys. Res 103 D24:3214132157.

    • Search Google Scholar
    • Export Citation
  • Antonelli, P. 2001. Principal component analysis: A tool for processing hyperspectral infrared data. Ph.D. thesis, University of Wisconsin—Madison. [Available from University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706.].

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H. Coauthors, 2003. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens 41:253264.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A. and B. A. Wielicki. 1994. Cirrus cloud retrieval using infrared sounder data: Multilevel cloud errors. J. Appl. Meteor 33:107117.

    • Search Google Scholar
    • Export Citation
  • Bayler, G. M., R. M. Aune, and W. H. Raymond. 2000. NWP cloud initialization using GOES sounder data and improved modeling of nonprecipitating clouds. Mon. Wea. Rev 128:39113920.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T. 1974. Remote sounding of cloudy atmospheres: I. The single layer cloud. J. Atmos. Sci 31:233243.

  • Chung, S., S. A. Ackerman, P. F. van Delst, and W. P. Menzel. 2000. Calculation and interferometer measurements of ice cloud characteristics. J. Appl. Meteor 39:634644.

    • Search Google Scholar
    • Export Citation
  • Diak, G. R., M. C. Anderson, W. L. Bland, J. M. Norman, J. M. Mecikalski, and R. A. Aune. 1998. Agricultural management decision aids driven by real-time satellite data. Bull. Amer. Meteor. Soc 79:13451355.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R. 1989. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation I: Theory and simulation. Quart. J. Roy. Meteor. Soc 115:10011026.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R. and W. P. Menzel. 1989. Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteor 28:267275.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., B. A. Baum, W. P. Menzel, S. A. Ackerman, C. C. Moeller, and J. D. Spinhirne. 1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. J. Geophys. Res 104:2454724555.

    • Search Google Scholar
    • Export Citation
  • Gurka, J. J. and T. J. Schmit. 2002. Recommendations on the GOES-R series from the GOES users' conferences. Applications with Weather Satellites, W. P. Menzel et al., Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4895),. 95102.

    • Search Google Scholar
    • Export Citation
  • Hannon, S., L. L. Strow, and W. W. McMillan. 1996. Atmospheric infrared fast transmittance models: A comparison of two approaches. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II. P. B. Hays and J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 2830). 94105.

    • Search Google Scholar
    • Export Citation
  • Huang, H. L., W. L. Smith, J. Li, P. Antonelli, X. Wu, R. O. Knuteson, B. Huang, and B. J. Osborne. 2004. Minimum local emissivity variance retrieval of cloud altitude and effective spectral emissivity—simulation and initial verification. J. Appl. Meteor 43:795809.

    • Search Google Scholar
    • Export Citation
  • Isaacs, R. G., R. N. Hoffman, and L. D. Kaplan. 1986. Satellite remote sensing of meteorological parameters for global numerical weather prediction. Rev. Geophys 24:701743.

    • Search Google Scholar
    • Export Citation
  • Kim, D. S. and S. G. Benjamin. 2000. Assimilation of cloud-top pressure derived from GOES sounder data into MAPS/RUC. Preprints, 10th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., 110–113.

    • Search Google Scholar
    • Export Citation
  • King, M. D. Coauthors, 2003. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens 41:442458.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, and A. J. Schreiner. 2001. Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements. J. Appl. Meteor 40:312330.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, Z. Yang, R. A. Frey, and S. A. Ackerman. 2003. High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements. J. Appl. Meteor 42:204226.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, F. Sun, T. J. Schmit, and J. Gurka. 2004. AIRS subpixel cloud characterization using MODIS cloud products. J. Appl. Meteor 43:10831094.

    • Search Google Scholar
    • Export Citation
  • Lonnqvist, L. 1995. Experiences with a novel single-lens cloud height lidar. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 106–109.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P. and J. F. W. Purdom. 1994. Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc 75:757781.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart. 1983. Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor 22:377384.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., D. P. Wylie, and K. I. Strabala. 1992. Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with VAS. J. Appl. Meteor 31:370385.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey. 2003. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens 41:459473.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D. 1976. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys 14:609624.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, and W. P. Menzel. 2002. Advanced Baseline Imager (ABI) for future Geostationary Operational Environmental Satellites (GOES-R and beyond). Applications with Weather Satellites. W. P. Menzel et al., Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4895),. 111122.

    • Search Google Scholar
    • Export Citation
  • Schreiner, A. J., D. A. Unger, W. P. Menzel, G. P. Ellrod, K. I. Strabala, and J. L. Pellet. 1993. A comparison of ground and satellite observations of cloud cover. Bull. Amer. Meteor. Soc 74:18511861.

    • Search Google Scholar
    • Export Citation
  • Schreiner, A. J., T. J. Schmit, and W. P. Menzel. 2001. Observations and trends of clouds based on GOES sounder data. J. Geophys. Res 106D:2034920363.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., J. Li, W. Paul Menzel, and L. E. Gumley. 2003. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor 42:10721091.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L. and C. M. R. Platt. 1978. Comparison of satellite-deduced cloud heights with indications from radiosonde and ground-based laser measurements. J. Appl. Meteor 17:17961802.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L. and R. A. Frey. 1990. On cloud altitude determinations from high resolution interferometer sounder (HIS) observations. J. Appl. Meteor 29:658662.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, and N. Grody. 1974. Nimbus-5 sounder data processing system. Part I: Measurement characteristics and data reduction procedures. NOAA Tech. Memo. NESS 57, 99 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, C. M. Hayden, D. C. Wark, and L. M. McMillin. 1979. TIROS-N operational vertical sounder. Bull. Amer. Meteor. Soc 60:11771187.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L. and P. J. Webster. 1981. Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci 38:235247.

  • Stephens, G. L., S. C. Tsay, J. P. W. Stackhouse, and P. Flatau. 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci 47:17421753.

    • Search Google Scholar
    • Export Citation
  • Strow, L. L., S. E. Hannon, S. DeSouza-Machado, H. Motteler, and D. Tobin. 2003. An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens 41:303313.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., D. Reuter, and M. T. Chahine. 1987. Cloud fields retrieved from analysis of HIRS2/MSU sounding data. J. Geophys. Res 92:40354050.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. Blaisdell. 2003. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens 41:390409.

    • Search Google Scholar
    • Export Citation
  • Wei, H., P. Yang, J. Li, B. A. Baum, A. Huang, S. Platnick, and Y. X. Hu. 2004. Retrieval of ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A. and J. A. Coakley Jr.. 1981. Cloud retrieval using infrared sounder data: Error analysis. J. Appl. Meteor 20:157169.

  • Wylie, D. P. and W. P. Menzel. 1989. Two years of cloud cover statistics using VAS. J. Climate 2:380392.

  • Yang, P., B. C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S. C. Tsay, D. M. Winker, and S. L. Nasiri. 2001. Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer 70:473504.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H-L. Huang, S-Chee Tsay, and S. Ackerman. 2003. Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer 79–80:11591169.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 127 85 13
PDF Downloads 44 34 1

Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters

View More View Less
  • a Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
  • | b Office of Research and Applications, NOAA/NESDIS, Madison, Wisconsin
  • | c National Satellite Meteorological Center, Beijing, China
  • | d Office of System Development, NOAA/NESDIS, Silver Spring, Maryland
Restricted access

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1–5 km). The combined MODIS–AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650–790 cm−1 or 15.38–12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS–AIRS 1DVAR). The MODIS–AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS–AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10–40 hPa for MODIS–AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS–AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.

Corresponding author address: Dr. Jun Li, Cooperative Institute for Meteorological Satellite Studies, SSEC, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. Jun.Li@ssec.wisc.edu

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1–5 km). The combined MODIS–AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650–790 cm−1 or 15.38–12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS–AIRS 1DVAR). The MODIS–AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS–AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10–40 hPa for MODIS–AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS–AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.

Corresponding author address: Dr. Jun Li, Cooperative Institute for Meteorological Satellite Studies, SSEC, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. Jun.Li@ssec.wisc.edu

Save