Polarimetric Radar Estimators Based on a Constrained Gamma Drop Size Distribution Model

J. Vivekanandan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Vivekanandan in
Current site
Google Scholar
PubMed
Close
,
Guifu Zhang National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
, and
Edward Brandes National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Edward Brandes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Raindrop size distribution (DSD) retrieval from remote radar measurements or from in situ disdrometer measurements is an important area of research. If the shape (μ) and slope (Λ) of a three-parameter gamma distribution n(D) = N0Dμ exp(−ΛD) are related to one another, as recent disdrometer measurements suggest, the gamma DSD model is simplified to a two-parameter DSD, that is, a constrained gamma DSD. An empirical relation between the μ and Λ was derived using moments estimated from video-disdrometer measurements. Here, the effects of DSD truncation on a μ and Λ relation were analyzed. It was shown that characteristic size and variance of size of a constrained gamma DSD depend only on the shape parameter μ. Assuming that a constrained gamma DSD is valid, S-band polarimetric radar–based estimators for rain rate, median volume diameter, specific propagation phase, attenuation, and differential attenuation were derived. The radar-based estimators were used to obtain the spatial distribution of DSD parameters corresponding to a range–height indicator of radar measurements. Self-consistency among polarization radar measurements is used to indirectly verify constrained gamma DSD-based polarization radar estimators.

Corresponding author address: Dr. J. Vivekanandan, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. vivek@ucar.edu

Abstract

Raindrop size distribution (DSD) retrieval from remote radar measurements or from in situ disdrometer measurements is an important area of research. If the shape (μ) and slope (Λ) of a three-parameter gamma distribution n(D) = N0Dμ exp(−ΛD) are related to one another, as recent disdrometer measurements suggest, the gamma DSD model is simplified to a two-parameter DSD, that is, a constrained gamma DSD. An empirical relation between the μ and Λ was derived using moments estimated from video-disdrometer measurements. Here, the effects of DSD truncation on a μ and Λ relation were analyzed. It was shown that characteristic size and variance of size of a constrained gamma DSD depend only on the shape parameter μ. Assuming that a constrained gamma DSD is valid, S-band polarimetric radar–based estimators for rain rate, median volume diameter, specific propagation phase, attenuation, and differential attenuation were derived. The radar-based estimators were used to obtain the spatial distribution of DSD parameters corresponding to a range–height indicator of radar measurements. Self-consistency among polarization radar measurements is used to indirectly verify constrained gamma DSD-based polarization radar estimators.

Corresponding author address: Dr. J. Vivekanandan, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. vivek@ucar.edu

Save
  • Andsager, K., K. V. Beard, and N. F. Laird. 1999. Laboratory measurements of axis ratios for large drops. J. Atmos. Sci. 56:26732683.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V. and C. Chuang. 1987. A new model for the equilibrium shape of raindrops. J. Atmos. Sci. 44:15091524.

  • Beard, K. V. and R. J. Kubesh. 1991. Laboratory measurements of small raindrop distortion. Part II: Oscillations. J. Atmos. Sci. 48:22452264.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., A. V. Ryzhkov, and D. S. Zrnić. 2001. An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol. 18:363375.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan. 2002. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor. 41:674685.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan. 2003. An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor. 42:652660.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, and R. Xiao. 1998. Raindrop axis ratios and size distributions in Florida rainshafts: An assessment of multiparameter radar algorithm. IEEE Trans. Geosci. Remote Sens. 36:703715.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V. and V. N. Bringi. 1987. Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol. 4:464478.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Cooper, and V. N. Bringi. 1988. Axis ratios and oscillations of raindrops. J. Atmos. Sci. 45:13231333.

  • Dou, X., W. Liu, P. Amayene, and J. Liu. 1999. Optimization of the parameter of the raindrop size distribution in rain rate measurement by airborne radar. Quart. J. Appl. Meteor. 10:293298.

    • Search Google Scholar
    • Export Citation
  • Doviak, J. D. and D. S. Zrnić. 1993. Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Gorgucci, E. and G. Scarchilli. 1997. Intercomparison of multiparameter radar algorithms for estimating rainfall rate. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 55–56.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J. and T. M. Blackman. 2002. The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor. 41:286297.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry. 1987. Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc. 113:469489.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R. 1983. Microphysical interpretation of multiparameter radar measurements in rain. Part I: Interpretation of polarization measurements and estimation of raindrop shapes. J. Atmos. Sci. 40:17921802.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., L. D. Carey, D. S. Zrnić, and P. T. May. 2001. Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution. J. Appl. Meteor. 40:526545.

    • Search Google Scholar
    • Export Citation
  • Kozu, T. and K. Nakamura. 1991. Rain parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol. 8:259270.

    • Search Google Scholar
    • Export Citation
  • Laws, J. O. and D. A. Parsons. 1943. The relationship of raindrop size to intensity. Trans. Amer. Geophys. Union 24:452460.

  • List, R. 1988. A linear radar reflectivity–rain rate relationship for steady tropical rain. J. Atmos. Sci. 45:35643572.

  • Marshall, J. S. and W. Palmer. 1948. The distribution of raindrops with size. J. Meteor. 5:165166.

  • Oguchi, T. 1983. Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE 71:10291078.

  • Pruppacher, H. R. and R. L. Pitter. 1971. A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci. 28:8694.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. and C. W. Ulbrich. 2003. Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, R. M. Wakimoto and R. Srivastava, Eds., Amer. Meteor. Soc., 237–258.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V. and D. S. Zrnić. 1995. Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol. 12:249256.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, G. Huang, E. A. Brandes, and J. Vivekanandan. 1999. Characteristics of hydrometer orientation obtained from radar polarimetric measurements in a linear polarization basis. Proc. IGARSS'99, Hamburg, Germany, IEEE, 702–704.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M. and D. S. Zrnić. 1987. Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol. 4:588598.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A. and V. N. Bringi. 1976. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor. 15:6976.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L. 1998. Raindrop size distributions: Exponential or gamma—Does it make a difference? Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 399–402.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou. 2001. The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. 40:11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A. and D. A. Short. 1996. Evidence for tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor. 35:355371.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W. 1983. Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor. 22:17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W. and D. Atlas. 1998. Rain microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor. 37:912923.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka. 1999a. Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc. 80:381388.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and A. V. Ryzhkov. 1999b. Estimation of canting angle distribution of raindrop spectra using radar measurements. Preprints, Int. Radar Symp., Bangalore, India, IETE and IEEE, 209–218.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and M. K. Politovich. 2001. An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection. J. Atmos. Oceanic Technol. 18:17871798.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, S. Ellis, D. Rajopadhyayay, and S. Avery. 2003. Radar reflectivity calibration using differential propagation phase measurement. Radio Sci. 38:8049. doi:10.1029/2002RS002676.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., A. Kruger, K. S. Gage, A. Tokay, R. Cifelli, W. F. Krajewski, and C. Kummerow. 2000. Comparison of simultaneous rain drop size distribution estimated from two surface disdrometers and a UHF profiler. Geophys. Res. Lett. 27:17631766.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T. 1984. Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci. 41:16481661.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. and R. A. Houze. 1997. Measurements of raindrop size distributions over the Pacific warm pool and implications for ZR relations. J. Appl. Meteor. 36:847867.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes. 2001. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 39:830841.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes. 2003. The shape–slope relation in observed gamma raindrop size distribution: Statistical error or useful information? J. Atmos. Oceanic Technol. 20:11061119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 947 247 30
PDF Downloads 693 183 21