Infrared Radiative Properties of the Antarctic Plateau from AVHRR Data. Part I: Effect of the Snow Surface

Joannes Berque Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Joannes Berque in
Current site
Google Scholar
PubMed
Close
,
Dan Lubin Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Dan Lubin in
Current site
Google Scholar
PubMed
Close
, and
Richard C. J. Somerville Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Richard C. J. Somerville in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effective scene temperature, or “brightness temperature,” measured in channel 3 (3.5–3.9 μm) of the Advanced Very High Resolution Radiometer (AVHRR) is shown to be sensitive, in principle, to the effective particle size of snow grains on the Antarctic plateau, over the range of snow grain sizes reported in field studies. In conjunction with a discrete ordinate method radiative transfer model that couples the polar atmosphere with a scattering and absorbing snowpack, the thermal infrared channels of the AVHRR instrument can, therefore, be used to estimate effective grain size at the snow surface over Antarctica. This is subject to uncertainties related to the modeled top-of-atmosphere bidirectional reflectance distribution function resulting from the possible presence of sastrugi and to lack of complete knowledge of snow crystal shapes and habits as they influence the scattering phase function. However, when applied to NOAA-11 and NOAA-12 AVHRR data from 1992, the snow grain effective radii of order 50 μm are retrieved, consistent with field observations, with no apparent discontinuity between two spacecraft having different viewing geometries. Retrieved snow grain effective radii are 10–20-μm larger when the snow grains are modeled as hexagonal solid columns rather than as spheres with a Henyey–Greenstein phase function. Despite the above-mentioned uncertainties, the retrievals are consistent enough that one should be able to monitor climatically significant changes in surface snow grain size due to major precipitation events. It is also shown that a realistic representation of the surface snow grain size is critical when retrieving the optical depth and effective particle radius of clouds for the optically thin clouds most frequently encountered over the Antarctic plateau.

Corresponding author address: Dr. Dan Lubin, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0221. dlubin@ucsd.edu

Abstract

The effective scene temperature, or “brightness temperature,” measured in channel 3 (3.5–3.9 μm) of the Advanced Very High Resolution Radiometer (AVHRR) is shown to be sensitive, in principle, to the effective particle size of snow grains on the Antarctic plateau, over the range of snow grain sizes reported in field studies. In conjunction with a discrete ordinate method radiative transfer model that couples the polar atmosphere with a scattering and absorbing snowpack, the thermal infrared channels of the AVHRR instrument can, therefore, be used to estimate effective grain size at the snow surface over Antarctica. This is subject to uncertainties related to the modeled top-of-atmosphere bidirectional reflectance distribution function resulting from the possible presence of sastrugi and to lack of complete knowledge of snow crystal shapes and habits as they influence the scattering phase function. However, when applied to NOAA-11 and NOAA-12 AVHRR data from 1992, the snow grain effective radii of order 50 μm are retrieved, consistent with field observations, with no apparent discontinuity between two spacecraft having different viewing geometries. Retrieved snow grain effective radii are 10–20-μm larger when the snow grains are modeled as hexagonal solid columns rather than as spheres with a Henyey–Greenstein phase function. Despite the above-mentioned uncertainties, the retrievals are consistent enough that one should be able to monitor climatically significant changes in surface snow grain size due to major precipitation events. It is also shown that a realistic representation of the surface snow grain size is critical when retrieving the optical depth and effective particle radius of clouds for the optically thin clouds most frequently encountered over the Antarctic plateau.

Corresponding author address: Dr. Dan Lubin, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0221. dlubin@ucsd.edu

Save
  • Aoki, T., T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio. 2000. Effect of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res. 105:1021910236.

    • Search Google Scholar
    • Export Citation
  • Braaten, D. A. 2000. Direct measurements of episodic snow accumulation on the Antarctic polar plateau. J. Geophys. Res. 105:1011910128.

    • Search Google Scholar
    • Export Citation
  • Carlson, R. W. and T. Arakelian. 1993. Spectral bidirectional reflectance and energy absorption rates of Antarctic snow. Antarct. J. US 28:256258.

    • Search Google Scholar
    • Export Citation
  • Carlson, R. W., T. Arakelian, and W. D. Smythe. 1992. Spectral reflectance of Antarctic snow: “Ground truth” and spacecraft measurements. Antarct. J. US 27:296298.

    • Search Google Scholar
    • Export Citation
  • Dong, S., G. G. Mace, P. Minnis, and D. F. Young. 2001. Arctic stratus cloud properties and their impact on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res. 106:1529715312.

    • Search Google Scholar
    • Export Citation
  • Dozier, J. and S. G. Warren. 1982. Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res. 18:14241434.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T. and P. J. Flatau. 1994. Discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer. 11:14911499.

  • Ebert, E. 1987. A pattern recognition technique for distinguishing surface and cloud types in the polar regions. J. Climate Appl. Meteor. 26:14121427.

    • Search Google Scholar
    • Export Citation
  • Fily, M., C. Leroux, J. Lenoble, and C. Sergent. 1998. Terrestrial snow studies from remote sensing in the solar spectrum and in the thermal infrared. Astrophys. Space Sci. Libr. 227:421441.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., S. Gandolfi, F. la Marca, and S. Urbini. 2002. Snow dunes and glazed surfaces in Antarctica: New field and remote-sensing data. Ann. Glaciol. 34:8188.

    • Search Google Scholar
    • Export Citation
  • Gay, M., M. Fily, C. Genthon, M. Frezzotti, H. Oerter, and J-G. Winther. 2002. Snow grain-size measurements in Antarctica. J. Glaciol. 48:527535.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C. and D. K. Perovich. 1984. Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. J. Geophys. Res. 89:35733580.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C. and S. G. Warren. 1999. Representation of a nonspherical particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104:3169731709.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., S. G. Warren, and P. C. Mullen. 1994. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res. 99:1866918684.

    • Search Google Scholar
    • Export Citation
  • Han, W., K. Stamnes, and D. Lubin. 1999. Remote sensing of surface and cloud properties in the Arctic from AVHRR measurements. J. Appl. Meteor. 38:9891012.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E. and J. B. Pollack. 1970. Near-infrared light scattering by terrestrial clouds. J. Atmos. Sci. 27:265281.

  • Henyey, L. C. and J. L. Greenstein. 1941. Diffuse radiation in the galaxy. Astrophys. J. 93:7083.

  • Key, J. and J. Intrieri. 2000. Cloud particle phase determination with the AVHRR. J. Appl. Meteor. 39:17971805.

  • Key, J., P. Yang, B. A. Baum, and S. L. Nasiri. 2002. Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res.,107, 4181, doi:10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K. and A. W. Hogan. 1979. Properties of diamond dust type ice crystal observed in summer season at Amundsen–Scott South Pole station, Antarctica. J. Meteor. Soc. Japan 57:180190.

    • Search Google Scholar
    • Export Citation
  • Kou, L., D. Labrie, and P. Chylek. 1994. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt. 32:35313540.

    • Search Google Scholar
    • Export Citation
  • Kuhn, M. 1974. Anisotropic reflection from sastrugi fields. Antarct. J. US 9:123125.

  • La Chapelle, E. R. 1969. Field Guide to Snow Crystals. University of Washington Press, 101 pp.

  • Leroux, C. and M. Fily. 1998. Modeling the effect of sastrugi on snow reflectance. J. Geophys. Res. 103:2577925788.

  • Leroux, C., J-L. Deuze, P. Goloub, C. Segent, and M. Fily. 1998. Ground measurements of polarized bidirectional reflectance of snow in the near-infrared spectral domain: Comparison with model results. J. Geophys. Res. 103:1972119731.

    • Search Google Scholar
    • Export Citation
  • Liljequist, G. H. 1956. Short-wave radiation (Maudheim, 71°03′S, 10°56′W) Energy Exchange of an Antarctic Snow Field, Vol. 2, Part 14,. Norwegian–British–Swedish Antarctic Expedition, 1949–52. Scientific Results, Norsk Polarinstitutt, 82–92.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., J-P. Chen, P. Pilewskie, V. Ramanathan, and F. P. J. Valero. 1996. Microphysical examination of excess cloud absorption in the tropical atmosphere. J. Geophys. Res. 101:1696116972.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., B. Chen, D. H. Bromwich, R. C. J. Somerville, and W. H. Lee. 1998. The impact of Antarctic cloud radiative properties on a GCM climate simulation. J. Climate 11:447462.

    • Search Google Scholar
    • Export Citation
  • Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne. 1998. The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds. J. Atmos. Sci. 55:28742883.

    • Search Google Scholar
    • Export Citation
  • Mahesh, A., V. P. Walden, and S. G. Warren. 2001a. Ground-based infrared remote sensing of cloud properties over the Antarctic Plateau. Part I: Cloud-base heights. J. Appl. Meteor. 40:12651278.

    • Search Google Scholar
    • Export Citation
  • Mahesh, A., V. P. Walden, and S. G. Warren. 2001b. Ground-based inferred remote sensing of cloud properties over the Antarctic Plateau. Part II: Cloud optical depths and particle sizes. J. Appl. Meteor. 40:12791294.

    • Search Google Scholar
    • Export Citation
  • Masonis, S. J. and S. G. Warren. 2001. Gain of the AVHRR visible channel tracked using bidirectional reflectance of Antarctic and Greenland snow. Int. J. Remote Sens. 22:14951520.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M. and A. J. Heymsfield. 1998. The definition and significance of an effective radius for ice clouds. J. Atmos. Sci. 55:20392052.

    • Search Google Scholar
    • Export Citation
  • Mischenko, M. I. and A. Macke. 1999. How big should hexagonal crystals be to produce halos? Appl. Opt. 38:16261629.

  • Mischenko, M. I., L. D. Travis, and J. W. Hovenier. 1999. Introduction to special section: Electromagnetic scattering by nonspherical particles. J. Geophys. Res. 104:3167131672.

    • Search Google Scholar
    • Export Citation
  • Mondet, J., C. Leroux, and M. Fily. 1998. Antarctic snow reflectances from ADEOS/POLDER measurements. IEEE Trans. Geosci. Remote Sens. 5:25412543.

    • Search Google Scholar
    • Export Citation
  • Nolin, A. W. 1998. Mapping snow grain size on the ice sheet with a laser altimeter. IEEE Trans. Geosci. Remote Sens. 4:22642266.

  • Nolin, A. W. and J. Stroeve. 1997. The changing albedo of the Greenland ice sheet: Implications for climate modeling. Ann. Glaciol. 25:5157.

    • Search Google Scholar
    • Export Citation
  • O'Rawe Hinton, P. 1991. Monte Carlo models for the reflection of sunlight from rough snow surfaces: Suncups and sastrugi. M.S. thesis, Dept. of Atmospheric Sciences, University of Washington, 521 pp.

    • Search Google Scholar
    • Export Citation
  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart. 1991. Information content of the AVHRR channels 4 and 5 with respect to the effective radius of cloud particles. J. Appl. Meteor. 30:973984.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. and J. Govoni. 1991. Absorption coefficients of ice from 250 to 400 nm. Geophys. Res. Lett. 18:12331235.

  • Pettre, P. 1986. Accumulation distribution in Terre Adelie, Antarctica: Effect of meteorological parameters. J. Glaciol. 32:486500.

  • Rossow, W. B. and A. A. Lacis. 1990. Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J. Climate 3:12041253.

    • Search Google Scholar
    • Export Citation
  • Salisbury, J. W., D. M. D'Aria, and A. Wald. 1994. Measurements of thermal infrared spectral reflectance of frost, snow, and ice. J. Geophys. Res. 99:2423524240.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J. and J. R. Key. 1994. Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983–1990. J. Appl. Meteor. 33:948963.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J. and S. R. Yhann. 1994. Reduction of noise in AVHRR channel 3 data with minimum distortion. IEEE Trans. Geosci. Remote Sens. 32:315328.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S-C. Tsay, W. Wiscombe, and K. Jayaweera. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27:25022509.

    • Search Google Scholar
    • Export Citation
  • Stone, R. S., G. L. Stephens, C. M. R. Platt, and S. Banks. 1990. The remote sensing of thin cirrus clouds using satellites, lidar and radiative transfer theory. J. Appl. Meteor. 29:353366.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C. and A. W. Nolin. 2002. New methods to infer snow albedo from the MISR instrument with applications to the Greenland ice sheet. IEEE Trans. Geosci. Remote Sens. 40:16161625.

    • Search Google Scholar
    • Export Citation
  • Takano, Y. and K-N. Liou. 1989. Solar radiative transfer in cirrus clouds. Part I: Single scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci. 46:319.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G. 1982. Optical properties of snow. Rev. Geophys. Space Phys. 20:6789.

  • Warren, S. G. 1984. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23:12061225.

  • Warren, S. G. and W. J. Wiscombe. 1980. A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci. 37:27342745.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G. and A. D. Clarke. 1990. Soot in the atmosphere and snow surface of Antarctica. J. Geophys. Res. 95:18111816.

  • Warren, S. G., R. E. Brandt, and P. O'Rawe Hinton. 1998. Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res. 103:2578925807.

    • Search Google Scholar
    • Export Citation
  • Weinreb, M. P., G. Hamilton, and S. Brown. 1990. Nonlinearity corrections in calibration of Advanced Very High Resolution Radiometer infrared channels. J. Geophys. Res. 95:73817388.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J. and S. G. Warren. 1980. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 37:27122733.

  • Xiong, X., D. Lubin, W. Li, and K. Stamnes. 2002. A critical examination of satellite cloud retrieval from AVHRR in the Arctic using SHEBA data. J. Appl. Meteor. 41:11951209.

    • Search Google Scholar
    • Export Citation
  • Yamanouchi, T. and S. Kawaguchi. 1992. Cloud distribution in the Antarctic from AVHRR data and radiation measurements at the surface. Int. J. Remote Sens. 13:111127.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell. 2000. Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res. 105:46994718.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 36 3
PDF Downloads 74 37 5