A Neural Networks–Based Fusion Technique to Estimate Half-Hourly Rainfall Estimates at 0.1° Resolution from Satellite Passive Microwave and Infrared Data

Francisco J. Tapiador School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Francisco J. Tapiador in
Current site
Google Scholar
PubMed
Close
,
Chris Kidd School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Chris Kidd in
Current site
Google Scholar
PubMed
Close
,
Vincenzo Levizzani Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, Italy

Search for other papers by Vincenzo Levizzani in
Current site
Google Scholar
PubMed
Close
, and
Frank S. Marzano Department of Electric Engineering, University of L'Aquila, L'Aquila, Italy

Search for other papers by Frank S. Marzano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The purpose of this paper is to evaluate a new operational procedure to produce half-hourly rainfall estimates at 0.1° spatial resolution. Rainfall is estimated using a neural networks (NN)–based approach utilizing passive microwave (PMW) and infrared satellite measurements. Several neural networks are tested, from multilayer perceptron to adaptative resonance theory architectures. The NN analytical selection process is explained. Half- hourly rain gauge data over Andalusia, Spain, are used for validation purposes. Several interpolation procedures are tested to transform point to areal measurements, including the maximum entropy estimation method. Rainfall estimations are also compared with Geostationary Operational Environmental Satellite precipitation index and histogram-matching results. Half-hourly rainfall estimates give ∼0.6 correlations with PMW data (∼0.2 with gauge), and average correlations of up to 0.7 and 0.6 are obtained for 0.5° and 0.1° monthly accumulated estimates, respectively.

Corresponding author address: Dr. Francisco J. Tapiador, School of Geography, Earth and Environmental Sci., University of Birmingham, B15 2TT Birmingham, United Kingdom. f.tapiador@bham.ac.uk

Abstract

The purpose of this paper is to evaluate a new operational procedure to produce half-hourly rainfall estimates at 0.1° spatial resolution. Rainfall is estimated using a neural networks (NN)–based approach utilizing passive microwave (PMW) and infrared satellite measurements. Several neural networks are tested, from multilayer perceptron to adaptative resonance theory architectures. The NN analytical selection process is explained. Half- hourly rain gauge data over Andalusia, Spain, are used for validation purposes. Several interpolation procedures are tested to transform point to areal measurements, including the maximum entropy estimation method. Rainfall estimations are also compared with Geostationary Operational Environmental Satellite precipitation index and histogram-matching results. Half-hourly rainfall estimates give ∼0.6 correlations with PMW data (∼0.2 with gauge), and average correlations of up to 0.7 and 0.6 are obtained for 0.5° and 0.1° monthly accumulated estimates, respectively.

Corresponding author address: Dr. Francisco J. Tapiador, School of Geography, Earth and Environmental Sci., University of Birmingham, B15 2TT Birmingham, United Kingdom. f.tapiador@bham.ac.uk

Save
  • Adler, R. F., A. J. Negri, P. R. Keehn, and I. M. Hakkarinen. 1993. Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor 32:335356.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., A. J. Negri, and R. F. Adler. 1999. A satellite infrared technique for diurnal rainfall variability studies. J. Geophys. Res 104 D24:3147731488.

    • Search Google Scholar
    • Export Citation
  • Anders, U. and O. Korn. 1999. Model selection in neural networks. Neural Networks 12:309323.

  • Bellerby, T., M. Todd, D. Kniveton, and C. Kidd. 2000. Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor 39:21152128.

    • Search Google Scholar
    • Export Citation
  • Carpenter, G. A., S. Grossberg, and S. Mehanian. 1989. Invariant recognition of cluttered scenes by a self-organizing ART architecture: CORT-X boundary segmentation. Neural Networks 2:11691181.

    • Search Google Scholar
    • Export Citation
  • Carpenter, G. A., M. N. Gjaja, S. Gopal, and C. E. Woodcock. 1997. ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data. IEEE Trans. Geosci. Remote Sens 35:308325.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., R. Brown, and C. G. Collier. 1993. Delineation of precipitation areas using Meteosat infrared and visible data in the region of the United Kingdom. J. Appl. Meteor 32:884898.

    • Search Google Scholar
    • Export Citation
  • Christakos, G. 1991. Some applications of the Bayesian maximum- entropy concepts in geostatistics. Maximum Entropy and Bayesian Methods, W. T. Grandy and L. H. Schick, Eds., Kluwer, 215– 229.

    • Search Google Scholar
    • Export Citation
  • Crosson, W. L., C. E. Duchon, R. Raghavan, and S. J. Goodman. 1996. Assessment of rainfall estimates using a standard ZR relationship and the probability matching method applied to composite radar data in central Florida. J. Appl. Meteor 35:12031219.

    • Search Google Scholar
    • Export Citation
  • Cybenko, G. 1989. Approximation by superposition of a sigmoidal function. Math. Control Signals Syst 2:303314.

  • Dagher, I., M. Georgiopoulos, G. L. Heileman, and G. Bebis. 1999. An ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance. IEEE Trans. Neural Networks 10:768779.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E. 1996. Results of the 3rd Algorithm Intercomparison Project (AIP-3) of the Global Precipitation Climatology Project (GPCP). BMRC Rep. 55, Bureau of Meteorology Research Centre.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R. 1997. SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res 102:1671516735.

  • Grossberg, S. 1969. Some networks that can learn, remember and reproduce any number of complicated space-time patterns. J. Math. Mech 19:5391.

    • Search Google Scholar
    • Export Citation
  • Herman, A., V. Kumar, P. Arkin, and J. Kousky. 1997. Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int. J. Remote Sens 18:21472159.

    • Search Google Scholar
    • Export Citation
  • Hornik, K., M. Stinchcombe, and H. White. 1989. Multilayer neural networks are universal approximators. Neural Networks 2:359366.

  • Hsu, L., H. V. Gupta, X. Gao, and S. Sorooshian. 1999. Estimation of physical variables from multi-channel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res 35:16051618.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh. 2001. A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc 82:205217.

    • Search Google Scholar
    • Export Citation
  • Jaynes, E. T. 1963. Information theory and statistical mechanics. Statistical Physics, K. Ford Ed., Benjamin.

  • Jaynes, E. T. 1990. Probability theory as logic. Maximum-Entropy and Bayesian Methods, P. F. Fougère, Ed., Kluwer.

  • Jensen, C. A., R. D. Reed, R. J. Marks II, M. A. El-Sharkawi, J-B. Jung, R. T. Miyamoto, G. M. Anderson, and C. J. Eggen. 1999. Inversion of feedforward neural networks: Algorithms and applications. Proc. IEEE 87:15361549.

    • Search Google Scholar
    • Export Citation
  • Kapur, J. N. and H. K. Kesavan. 1992. Entropy Optimization Principles with Applications. MIT Academic Press, 408 pp.

  • Kidd, C. 1998. On rainfall retrieval using polarization-corrected temperatures. Int. J. Remote Sens 19:981996.

  • Kummerow, C. and L. Giglio. 1995. A method for combining passive microwave and infrared rainfall observations. J. Atmos. Oceanic Technol 12:3345.

    • Search Google Scholar
    • Export Citation
  • Lee, Y. M. 1998. A methodological study of the application of the maximum entropy estimator to spatial interpolation. J. Geoor. Inf. Decis. Anal 2:265276.

    • Search Google Scholar
    • Export Citation
  • Lee, Y. M. and J. H. Ellis. 1997. Estimation and simulation of lognormal random fields. Comput. Geosci 23:1931.

  • Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino. 2001. Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation. Meteor. Appl 8:2341.

    • Search Google Scholar
    • Export Citation
  • Li, L., J. Vivekanandan, C. H. Chan, and L. Tsang. 1997a. Microwave radiometric technique to retrieve vapor, liquid and ice. Part I- Development of a neural network-based inversion method. IEEE Trans. Geosci. Remote Sens 35:224236.

    • Search Google Scholar
    • Export Citation
  • Li, L., J. Vivekanandan, C. H. Chan, and L. Tsang. 1997b. Microwave radiometric technique to retrieve vapor, liquid and ice. Part II- Joint studies of radiometer and radar winter clouds. IEEE Trans. Geosci. Remote Sens 35:237247.

    • Search Google Scholar
    • Export Citation
  • Linden, A. and J. Kindermann. 1989. Inversion of multilayer nets. Proc. Int. Joint. Conf. Neural Networks, Vol. II, San Diego, CA,. IEEE, 425–430.

    • Search Google Scholar
    • Export Citation
  • Linderman, J. and A. Linden. 1990. Inversion of neural networks by gradient descent. Parallel Comput 14:277286.

  • Marzano, F. S., A. Mugnai, G. Panegrossi, N. Pierdicca, E. A. Smith, and J. Turk. 1999. Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar. IEEE Trans. Geosci. Remote Sens 37:596613.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., M. Palmacci, D. Cimini, and J. F. Turk. 2002. Statistical integration of satellite passive microwave and infrared data for high-temporal sampling retrieval of rainfall. Proc. IGARSS'02, Toronto, Canada, IEEE.

    • Search Google Scholar
    • Export Citation
  • Murata, N., S. Yoshizawa, and S. Amari. 1994. A criterion for determining the number of parameters in an artificial neural network model. IEEE Trans. Neural Networks 5:865872.

    • Search Google Scholar
    • Export Citation
  • Noll, D. 1997. Restoration of degraded images with maximum entropy. J. Global Optimization 10:91103.

  • Richards, F. and P. Arkin. 1981. On the relationship between satellite- observed cloud cover and precipitation. Mon. Wea. Rev 109:10811093.

    • Search Google Scholar
    • Export Citation
  • Sarle, W. S. 1994. Neural networks and statistical models. Proc. 19th Annual SAS Users Group International Conference, Cary, NC, SAS Institute, 1538–1550.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier. 2002. An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc 83:977992.

    • Search Google Scholar
    • Export Citation
  • Shannon, C. E. 1948. A mathematical theory of the communication. Bell Syst. Tech. J 27:379423.

  • Shore, J. E. and R. W. Johnson. 1980. Axiomatic derivation of the principle of maximum entropy and the principle of minumum cross-entropy. IEEE Tran. Inf. Theory 26:2639.

    • Search Google Scholar
    • Export Citation
  • Sivapalan, M. and G. Blöschl. 1998. Transformation of point rainfall to areal rainfall: Intensity–duration–frequency curves. J. Hydrol 204:150167.

    • Search Google Scholar
    • Export Citation
  • Skilling, J. and R. K. Bryan. 1984. Maximum entropy image reconstruction: General algorithm. Mon. Not. Roy. Astron. Soc 211:111124.

  • Smith, D. M., D. R. Kniveton, and E. C. Barrett. 1998. A statistical modeling approach to passive microwave rainfall retrieval. J. Appl. Meteor 37:135154.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A. Coauthors, 1998. Results of WetNet PIP-2 project. J. Atmos. Sci 55:14831536.

  • Smith, E. A. Coauthors, 2002. Precipitation retrieval: Algorithm and calval architecture. GPM Science Implementation Plan.

  • Sooroshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite. 2000. Evaluation of PERSIANN system satellite- based estimates of tropical rainfall. Bull. Amer. Meteor. Soc 81:20352046.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J. and J. L. Casanova. 2002. An algorithm for the fusion of images based on Jaynes' maximum entropy method. Int. J. Remote Sens 23:777786.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C. and R. Washington. 1999. A simple method to retrieve 3-hourly estimates of global tropical and subtropical precipitation from International Satellite Cloud Climatology Program (ISCCP) D1 data. J. Atmos. Oceanic Technol 16:146155.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., E. C. Barrett, M. J. Beaumont, and J. Green. 1995. Satellite identification of rain days over the upper Nile River basin using an optimum infrared rain/no-rain threshold temperature model. J. Appl. Meteor 34:26002611.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., C. Kidd, D. Kniveton, and T. J. Bellerby. 2001. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol 18:742755.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., G. D. Rohaly, J. Hawkins, E. A. Smith, F. S. Marzano, A. Mugnai, and V. Levizzani. 1999. Meteorological applications of precipitation estimation from combined SSM/I, TRMM and infrared geostationary satellite data. Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere, P. Pampaloni and S. Paloscia, Eds., VSP Int. Science Publishers, 353– 363.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., E. E. Ebert, H-J. Oh, and B-J. Sohn. 2002. Validation and applications of a realtime global precipitation analysis. Proc. IGARSS, Toronto, Canada, IEEE.

    • Search Google Scholar
    • Export Citation
  • Vicente, G., R. A. Scofield, and W. P. Menzel. 1998. The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc 79:18831898.

    • Search Google Scholar
    • Export Citation
  • Williams, R. J. 1986. Inverting a connectionist network mapping by backpropagation of error. Proc. 8th Annual Conf. of the Cognitive Science Society, Hillsdale, NJ, Cognitive Science Society, 859– 865.

    • Search Google Scholar
    • Export Citation
  • Xu, L., X. Gao, S. Sorooshian, and P. A. Arkin. 1999. A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor 38:569579.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 487 204 12
PDF Downloads 199 56 5