• Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley. 1998. Determinating clear sky from clouds with MODIS. J. Geophys. Res 103:3214132157.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H. Coauthors, 2003. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens 41:253264.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. Hu, P. F. Soulen, and S. C. Tsay. 2000. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS, 1, Data and models. J. Geophys. Res 105:1176711780.

    • Search Google Scholar
    • Export Citation
  • Chung, S., S. A. Ackerman, P. F. van Delst, and W. P. Menzel. 2000. Model calculations and interferometer measurements of ice-cloud characteristics. J. Appl. Meteor 39:634644.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R. 1989. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation. Quart. J. Roy. Meteor. Soc 115:10011026.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, and B. J. Soden. 1996. Climate parameters from satellite spectral measurements. Part I: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter. J. Climate 9:327344.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., B. A. Baum, W. P. Menzel, S. A. Ackerman, C. C. Moeller, and J. D. Spinhirne. 1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. J. Geophys. Res 104:2454724555.

    • Search Google Scholar
    • Export Citation
  • Haertel, V. and D. A. Landgrebe. 1999. On the classification of classes with nearly equal spectral response in remote sensing hyperspectral image data. IEEE Trans. Geosci. Remote Sens 37:23742385.

    • Search Google Scholar
    • Export Citation
  • Hannon, S. E., L. L. Strow, and W. W. McMillan. 1996. Atmospheric infrared fast transmittance models: A comparison of two approaches. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II P. B. Hays and J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 2830),. 94105.

    • Search Google Scholar
    • Export Citation
  • King, M. D. Coauthors, 2003. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens 41:442458.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, Z. Yang, R. A. Frey, and S. A. Ackerman. 2003. High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements. J. Appl. Meteor 42:204226.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, W. Zhang, F. Sun, T. J. Schmit, J. Gurka, F. Sun, and E. Weisz. 2004. Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P. and J. F. W. Purdom. 1994. Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc 75:757781.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., D. P. Wylie, and K. I. Strabala. 1992. Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with VAS. J. Appl. Meteor 31:370385.

    • Search Google Scholar
    • Export Citation
  • Nagle, F. W. 1998. The association of disparate satellite observations. Proc. Second Symp. on Integrated Observing Systems, Phoenix, AZ, Amer. Meteor. Soc., 49–52.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey. 2003. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens 41:459473.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D. 1976. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys 14:609624.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, and W. P. Menzel. 2002. Advanced Baseline Imager (ABI) for future Geostationary Operational Environmental Satellites (GOES-R and beyond). Applications with Weather Satellites W. P. Menzel et al., Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4895),. 111122.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson III, and G. S. Wade. 2002. Validation and use of GOES sounder moisture information. Wea. Forecasting 17:139154.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, C. M. Hayden, D. C. Wark, and L. M. McMillin. 1979. TIROS-N operational vertical sounder. Bull. Amer. Meteor. Soc 60:11771187.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel. 1994. Cloud properties inferred from 8–12-μm data. J. Appl. Meteor 33:212229.

  • Strow, L. L., S. E. Hannon, S. DeSouza-Machado, H. Motteler, and D. Tobin. 2003. An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens 41:303313.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., D. Reuter, and M. T. Chahine. 1987. Cloud fields retrieved from analysis of HIRS2/MSU sounding data. J. Geophys. Res 92:40354050.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. Blaisdell. 2003. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens 41:390409.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S. C. Tsay, D. M. Winker, and S. L. Nasiri. 2001. Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer 70:473504.

    • Search Google Scholar
    • Export Citation
  • Zhang, H. and W. P. Menzel. 2002. Improvement in thin cirrus retrievals using an emissivity-adjusted CO2 slicing algorithm. J. Geophys. Res 107:43274339.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 99 2
PDF Downloads 139 90 2

AIRS Subpixel Cloud Characterization Using MODIS Cloud Products

View More View Less
  • a Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
  • | b NOAA/NESDIS Office of Research and Applications, Madison, Wisconsin
  • | c Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
  • | d NOAA/NESDIS Office of Research and Applications, Madison, Wisconsin
  • | e NOAA/NESDIS Office of System Development, Silver Spring, Maryland
Restricted access

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (∼1–5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (∼13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS–AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.

Corresponding author address: Dr. Jun Li, CIMSS/SSEC, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. jun.li@ssec.wisc.edu

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (∼1–5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (∼13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS–AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.

Corresponding author address: Dr. Jun Li, CIMSS/SSEC, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. jun.li@ssec.wisc.edu

Save