• Austin, P. M. and R. A. Houze Jr.. 1973. A technique for computing vertical transports by precipitating cumuli. J. Atmos. Sci 30:11001111.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., H. Kumagai, T. Iguchi, and K. Okamoto. 1996. Development of an algorithm for classifying rain types (in Japanese). J. Commun. Res. Lab 42:325337.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto. 1998. Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. Eighth URSI Commission F Open Symp., Aveiro, Portugal, URSI, 143–146.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. P. and R. A. Houze Jr.. 1980. Sensitivity of diagnosed convective fluxes to model assumptions. J. Atmos. Sci 37:774783.

  • Chong, M. and D. Hauser. 1989. A tropical squall line observed during the COPT81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev 117:728744.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D. and R. A. Houze Jr.. 1984. Development and structure of winter monsoon cloud cluster on 10 December 1978. J. Atmos. Sci 41:933960.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang. 2003. Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate 16:23702384.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. E., J. D. Neelin, and C. S. Bretherton. 1994. On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc 120:11111143.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F. and R. A. Houze Jr.. 1983. Water budget of a mesoscale convective system in the Tropics. J. Atmos. Sci 40:18351850.

  • Gill, A. E. 1980. Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc 106:447462.

  • Grabowski, W. W., X. Wu, and M. W. Moncrieff. 1996. Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci 53:36843709.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., H. H. Hendon, and R. A. Houze Jr.. 1984. Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci 41:113121.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. 1973. A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci 30:11121123.

  • Houze Jr., R. A. 1981. Structures of atmospheric precipitation systems: A global survey. Radio Sci 16:671689.

  • Houze Jr., R. A. 1982. Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan 60:396410.

  • Houze Jr., R. A. 1989. Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc 115:425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox. Bull. Amer. Meteor. Soc 78:21792196.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. and C. A. Leary. 1976. Comparison of convective mass and heat transports in tropical easterly waves computed by two methods. J. Atmos. Sci 33:424429.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., C-P. Cheng, C. A. Leary, and J. F. Gamache. 1980. Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci 37:754773.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto. 2000. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor 39:20382052.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H. 1984. Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev 112:15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H. and G. S. Young. 1983. Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci 40:21382146.

  • Johnson, R. H. and X. Lin. 1997. Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci 54:20202034.

  • Johnson, R. H. and P. E. Ciesielski. 2002. Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan 80:561578.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. and R. Wilhelmson. 1978. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci 35:10701096.

  • Kozu, T. Coauthors, 2001. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens 39:102116.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K. and S. M. Lazarus. 1999. Intercomparison of multi-day simulations of convection during TOGA COARE with several cloud-resolving and single-column models. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 643–647.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. Coauthors, 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor 39:19651982.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier. 2003. Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor 42:505527.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A. and R. A. Houze Jr.. 1979. Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci 36:669679.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A. and R. A. Houze Jr.. 1980. The contribution of mesoscale motions to the mass and heat fluxes of an intense tropical convective system. J. Atmos. Sci 37:784796.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville. 1983. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor 22:10651092.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A. and P. Julian. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci 28:702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A. and P. Julian. 1972. Description of global scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci 29:11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A. and P. Julian. 1994. Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev 122:814837.

  • Mapes, B. E. 1993. Gregarious tropical convection. J. Atmos. Sci 50:20262037.

  • Mapes, B. E. 1997. Equilibrium vs. activation controls on large-scale variations of tropical deep convection. The Physics and Parameterization of Moist Convection, R. K. Smith, Ed., NATO ASI Series, Springer, 321–358.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T. 1966. Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan 44:2543.

  • Moncrieff, M. W., S. K. Krueger, D. Gregory, J-L. Redelsperger, and W-K. Tao. 1997. GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems. Bull. Amer. Meteor. Soc 78:831845.

    • Search Google Scholar
    • Export Citation
  • Nitta, T. 1970. A study of generation and convection of eddy available potential energy in Tropics. J. Meteor. Soc. Japan 48:524528.

  • Nitta, T. 1972. Energy budget of wave disturbances over the Marshall Island during the years of 1956 and 1958. J. Meteor. Soc. Japan 50:7184.

    • Search Google Scholar
    • Export Citation
  • Nitta, T. 1978. A diagnostic study of interaction of cumulus updrafts and downdrafts with large-scale motions in GATE. J. Meteor. Soc. Japan 56:232242.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K. 2003. A short history of the TRMM precipitation radar. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 187–195.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., C. D. Kummerow, Y. Hong, and W-K. Tao. 1999. Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor 38:633664.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A. and P. V. Hobbs. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci 41:29492972.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. and R. A. Houze Jr.. 2003. The TRMM precipitation radar's view of shallow, isolated rain. J. Appl. Meteor 42:15191524.

    • Search Google Scholar
    • Export Citation
  • Shie, C-L., W-K. Tao, J. Simpson, and C-H. Sui. 2003. Quasi-equilibrium states in the Tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate 16:817833.

    • Search Google Scholar
    • Export Citation
  • Shige, S. and T. Satomura. 2000. The gravity wave response in the troposphere around deep convection. J. Meteor. Soc. Japan 78:789801.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele. 1997. Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc 78:28172836.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. 1992. Global circulation and tropical cloud activity. The Global Role of Tropical Rainfall, J. S. Theon et al., Eds., A. Deepak, 77–92.

    • Search Google Scholar
    • Export Citation
  • Soong, S-T. and Y. Ogura. 1980. Response of tradewind cumuli to large-scale processes. J. Atmos. Sci 37:20352050.

  • Soong, S-T. and W-K. Tao. 1980. Response of deep tropical clouds to mesoscale processes. J. Atmos. Sci 37:20162034.

  • Stevens, B., D. A. Randall, X. Lin, and M. T. Montgomery. 1997. Comments on “On large-scale circulations in convecting atmospheres” by Emanuel, Neelin and Bretherton. Quart. J. Roy. Meteor. Soc 123:17711778.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., K. M. Lau, W-K. Tao, and J. Simpson. 1994. The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci 51:711728.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., K. Suzuki, M. Orita, M. Tokuno, and R. de la Mar. 1995. Videosonde observations of precipitation processes in equatorial cloud clusters. J. Meteor. Soc. Japan 73:509534.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N. 2002. Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophys. Res. Lett.,29, 1584, doi:10.1029/2001GL014113.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K-M. Lau, and C-H. Sui. 1996. Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev 124:18921913.

  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa. 1999. Abrupt termination of the 1997–98 El Niño in response to a Madden– Julian oscillation. Nature 402:279282.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. 2003. Goddard Cumulus Ensemble (GCE) model: Application for understanding precipitation processes. Cloud Systems, Hurricanes, and The Tropical Rainfall Measurement Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 107–137.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. and J. Simpson. 1993. Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci 4:3572.

  • Tao, W-K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc. 1990. An algorithm to estimate the heating budget from vertical hydrometer profiles. J. Appl. Meteor 29:12321244.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, and R. Adler. 1993a. Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan 71:685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, C-H. Sui, B. Ferrier, S. Lang, J. Scala, M-D. Chou, and K. Pickering. 1993b. Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to long radiation. J. Atmos. Sci 50:673690.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. Ferrier, and M-D. Chou. 1996. Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes. J. Atmos. Sci 53:26242651.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, W. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler. 2000. Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving vodel, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan 78:333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. Coauthors, 2001. Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor 40:957982.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. Coauthors, 2003. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys 82:97137.

    • Search Google Scholar
    • Export Citation
  • Thompson Jr., R. M., S. W. Payne, E. E. Recker, and R. J. Reed. 1979. Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci 36:5372.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine. 2002. Corrections of humidity measurement errors from Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol 19:9811002.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M. and D. A. Randall. 1996. Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations. J. Atmos. Sci 53:37103736.

    • Search Google Scholar
    • Export Citation
  • Yanai, M. and R. H. Johnson. 1993. Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 39–62.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci 30:611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung. 2000. The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci 57:23742396.

    • Search Google Scholar
    • Export Citation
  • Yang, S. and E. A. Smith. 1999a. Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J. Atmos. Oceanic Technol 16:633655.

    • Search Google Scholar
    • Export Citation
  • Yang, S. and E. A. Smith. 1999b. Four-dimensional structure of monthly latent heating derived from SSM/I satellite measurements. J. Climate 12:10161037.

    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M. 1991. Selective amplification of the eastward-propagating mode in a positive-only wave-CISK model on an equatorial beta plane. J. Meteor. Soc. Japan 69:353373.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 456 186 11
PDF Downloads 253 142 13

Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part I: Development of a Model-Based Algorithm

View More View Less
  • a Earth Observation Research and Application Center, Japan Aerospace Exploration Agency, Tokyo, Japan
  • | b Center for Climate System Research, University of Tokyo, Tokyo, Japan
  • | c Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | d Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
Restricted access

Abstract

An algorithm, the spectral latent heating (SLH) algorithm, has been developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission precipitation radar with a cloud-resolving model (CRM). Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were produced with numerical simulations of tropical cloud systems in the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. For convective and shallow stratiform regions, the lookup table refers to the precipitation-top height (PTH). For the anvil region, on the other hand, the lookup table refers to the precipitation rate at the melting level instead of PTH. A consistency check of the SLH algorithm was also done with the CRM-simulated outputs. The first advantage of this algorithm is that differences of heating profiles between the shallow convective stage and the deep convective stage can be retrieved. This is a result of the utilization of observed information, not only on precipitation type and intensity, but also on the precipitation depth. The second advantage is that heating profiles in the decaying stage with no surface rain can also be retrieved. This comes from utilization of the precipitation rate at the melting level for anvil regions.

Corresponding author address: Dr. Shoichi Shige, Department of Aerospace Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan. shige@aero.osakafu-u.ac.jp

Abstract

An algorithm, the spectral latent heating (SLH) algorithm, has been developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission precipitation radar with a cloud-resolving model (CRM). Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were produced with numerical simulations of tropical cloud systems in the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. For convective and shallow stratiform regions, the lookup table refers to the precipitation-top height (PTH). For the anvil region, on the other hand, the lookup table refers to the precipitation rate at the melting level instead of PTH. A consistency check of the SLH algorithm was also done with the CRM-simulated outputs. The first advantage of this algorithm is that differences of heating profiles between the shallow convective stage and the deep convective stage can be retrieved. This is a result of the utilization of observed information, not only on precipitation type and intensity, but also on the precipitation depth. The second advantage is that heating profiles in the decaying stage with no surface rain can also be retrieved. This comes from utilization of the precipitation rate at the melting level for anvil regions.

Corresponding author address: Dr. Shoichi Shige, Department of Aerospace Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan. shige@aero.osakafu-u.ac.jp

Save