• Anagnostou, E. N., W. F. Krajewski, and J. Smith. 1999. Uncertainty quantification of mean-areal radar-rainfall estimates. J. Atmos. Oceanic Technol 16:206215.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M. 1987. Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev 115:10531069.

  • Baachi, B. and N. T. Kottegoda. 1995. Identification and calibration of spatial correlation patterns of rainfall. J. Hydrol 165:311348.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G. 1991. An empirical method of estimating raingage and radar rainfall measurement bias and resolution. J. Appl. Meteor 30:282296.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L. and P. K. Kundu. 2003. Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model. J. Geophys. Res.,108, 4121, doi:10.1029/ 2002JD002641.

    • Search Google Scholar
    • Export Citation
  • Capsoni, C., F. Fedi, and A. Paraboni. 1987. A comprehensive attenuation time series generator and comparison with Olympus data meteorologically oriented methodology for the prediction of wave propagation parameters in telecommunication applications beyond 10 GHZ. Radio Sci 22:387393.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J. 2003. Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol 20:752759.

  • Ciach, G. J. and W. F. Krajewski. 1999a. On the estimation of radar rainfall error variance. Adv. Water Res 22:585595.

  • Ciach, G. J. and W. F. Krajewski. 1999b. Radar–rain gauge comparisons under observational uncertainties. J. Appl. Meteor 38:15191525.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, and S. A. Rutledge. 2002. Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM-LBA. J. Geophys. Res.,107, 8077, doi:10.1029/2000JD0000264.

    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C. 1993. Statistics for Spatial Data. Wiley and Sons, 462 pp.

  • Crum, T. D., R. L. Alberty, and D. W. Burgess. 1993. Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc 74:645653.

    • Search Google Scholar
    • Export Citation
  • Datta, S., W. L. Jones, B. Roy, and A. Tokay. 2003. Spatial variability of surface rainfall as observed from TRMM field campaign data. J. Appl. Meteor 42:598610.

    • Search Google Scholar
    • Export Citation
  • De Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, 440 pp.

  • Gebremichael, M., W. F. Krajewski, M. Morrissey, D. Langerud, G. J. Huffman, and R. Adler. 2003. Error uncertainty analysis of GPCP monthly rainfall products: A data-based simulation study. J. Appl. Meteor 42:18371848.

    • Search Google Scholar
    • Export Citation
  • Germann, U. and J. Joss. 2001. Variograms of radar reflectivity to describe the spatial continuity of Alpine precipitation. J. Appl. Meteor 40:10421059.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K. and E. C. Waymire. 1990. Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res 95:19992009.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K. and E. C. Waymire. 1993. A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteor 32:251267.

  • Ha, E. and G. R. North. 1999. Error analysis for some ground validation designs for satellite observations of precipitation. J. Atmos. Oceanic Technol 16:19491957.

    • Search Google Scholar
    • Export Citation
  • Habib, E. and W. F. Krajewski. 2002. Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B field campaign. J. Appl. Meteor 41:558572.

    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and G. J. Ciach. 2001a. Estimation of rainfall interstation correlation. J. Hydrometeor 2:621629.

  • Habib, E., W. F. Krajewski, and A. Kruger. 2001b. Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng 6:159166.

    • Search Google Scholar
    • Export Citation
  • Heiss, W. H., D. L. McGrew, and D. Sirmans. 1990. Next Generation Weather Radar (WSR-88D). Microwave J 33:7998.

  • Joss, J. and A. Waldvogel. 1990. Precipitation measurement and hydrology. Radar in Meteorology: Battan Memorial 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Joss, J. and R. Lee. 1995. The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor 34:26122630.

    • Search Google Scholar
    • Export Citation
  • Jothityangkoon, C., M. Sivapalan, and N. R. Viney. 2000. Tests of a space-time model of daily rainfall in southwestern Australia based on nonhomogeneous random cascades. Water Resour. Res 36:267284.

    • Search Google Scholar
    • Export Citation
  • Journel, A. G. and C. J. Huijbregts. 1978. Mining Geostatistics. Academic Press, 600 pp.

  • Kedem, B., L. S. Chiu, and G. R. North. 1990. Estimation of mean rain rate: Application to satellite observations. J. Geophys. Res 95 D2:19651972.

    • Search Google Scholar
    • Export Citation
  • Kowalski, C. J. 1972. On the effect of non-normality on the distribution of the sample product-moment correlation function. Appl. Stat 27:112.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F. 1987. Cokriging radar-rainfall and rain gage data. J. Geophys. Res 92 D8:95719580.

  • Krajewski, W. F., E. N. Anagnostou, and G. J. Ciach. 1996. Effects of the radar observation process on inferred rainfall statistics. J. Geophys. Res 101 D21:2649326502.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio. 1996. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens 34:12131232.

    • Search Google Scholar
    • Export Citation
  • Lai, C. D., J. C. W. Rayner, and T. P. Hutchinson. 1999. Robustness of the sample correlation—The bivariate lognormal case. J. Appl. Math. Decis. Sci 3:719.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S. and D. Schertzer. 1995. Multifractals and rain. New Uncertainty Concepts in Hydrology and Water Resources, A. W. Kundzewicz, Ed., Cambridge University Press, 111–144.

    • Search Google Scholar
    • Export Citation
  • Marks, D. A. Coauthors, 2000. Climatological processing and product development for the TRMM ground validation program. Phys. Chem. Earth 25B:871875.

    • Search Google Scholar
    • Export Citation
  • Matheron, G. 1963. Principles of geostatistics. Econ. Geol 58:12461266.

  • Morrissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang. 1995. The uncertainty in simple spatial averages using raingage networks. Water Resour. Res 31:20112017.

    • Search Google Scholar
    • Export Citation
  • Moszkowicz, S. 2000. Small-scale structure of rain field: Preliminary results basing on a digital gauge network and on MRL-5 Legionowo radar. Phys. Chem. Earth 25B:933938.

    • Search Google Scholar
    • Export Citation
  • Neter, J. and W. Wasserman. 1974. Linear Statistical Methods. Richard D. Irwin, 667 pp.

  • Niemczynowicz, J. 1988. The rainfall movement: A valuable complement to short-term rainfall data. J. Hydrol 104:311326.

  • North, G. R. and S. Nakamoto. 1989. Formalism for comparing rain estimation designs. J. Atmos. Oceanic Technol 6:985992.

  • Olsson, J. and J. Niemczynowicz. 1996. Multifractal analysis of daily spatial rainfall distributions. J. Hydrol 187:2943.

  • Omre, H. 1984. The variogram and its estimation. Geostatistics for Natural Resources Characterization, G. Verley et al., Eds., NATO ASI Series C, Vol. 1, D. Reidel, 107–125.

    • Search Google Scholar
    • Export Citation
  • Over, T. M. and V. K. Gupta. 1994. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing. J. Appl. Meteor 33:15261542.

    • Search Google Scholar
    • Export Citation
  • Over, T. M. and V. K. Gupta. 1996. A space–time theory of mesoscale rainfall using random cascades. J. Geophys. Res 101 D21:2631926332.

    • Search Google Scholar
    • Export Citation
  • Pereira Fo, A. J. and K. C. Crawford. 1999. Mesoscale precipitation fields. Part I: Statistical analysis and hydrologic response. J. Appl. Meteor 38:82101.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge. 2002. TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate 15:12781294.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1988. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 818 pp.

    • Search Google Scholar
    • Export Citation
  • Robinson, M. Coauthors, 2000. Evolving improvements to TRMM ground validation rainfall estimates. Phys. Chem. Earth 25B:971976.

  • Rodriguez-Iturbe, I. and J. M. Mejia. 1974. On the transformation of point rainfall to areal rainfall. Water Resour. Res 10:729735.

  • Ryzhkov, A., D. Zrnić, and R. Fulton. 2000. Areal rainfall estimates using differential phase. J. Appl. Meteor 39:263268.

  • Seed, A. and G. L. Austin. 1990. Variability of summer Florida rainfall and its significance for the estimation of rainfall by gages, radar, and satellite. J. Geophys. Res 95 D3:22072215.

    • Search Google Scholar
    • Export Citation
  • Shimizu, K. 1993. A bivariate lognormal distribution with an analysis of rainfall data. J. Appl. Meteor 32:161171.

  • Smith, J. A. and W. F. Krajewski. 1991. Estimation of the mean field bias of radar rainfall estimates. J. Appl. Meteor 30:397412.

  • Smith, J. A. and W. F. Krajewski. 1993. A modeling study of rainfall rate–reflectivity relationships. Water Resour. Res 29:25052514.

    • Search Google Scholar
    • Export Citation
  • Stol, P. T. 1972. The relative efficiency of the density of rain-gage networks. J. Hydrol 15:193208.

  • Tustison, B., E. Foufoula-Georgiou, and D. Harris. 2003. Scale-recursive estimation for multisensor quantitative precipitation forecast verification: A preliminary assessment. J. Geophys. Res.,108, 8377, doi:10.1029/2001JD001073.

    • Search Google Scholar
    • Export Citation
  • Valdes, J. B., E. Ha, C. Yoo, and G. R. North. 1994. Stochastic characterization of space–time precipitation: Implications for remote sensing. Adv. Water Res 17:4759.

    • Search Google Scholar
    • Export Citation
  • Vanmarcke, E. 1983. Random Fields: Analysis and Synthesis. MIT Press, 382 pp.

  • Winchell, M., H. V. Gupta, and S. Sorooshian. 1998. On the simulation of infiltration- and saturation-excesses runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation. Water Resour. Res 34:26552670.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., J. B. Valdes, and G. R. North. 1996. Stochastic modeling of multidimensional precipitation fields considering spectral structure. Water Resour. Res 32:21752187.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I. I. 1973. Statistical properties of precipitation patterns. J. Appl. Meteor 12:459472.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 74 0
PDF Downloads 82 36 0

Assessment of the Statistical Characterization of Small-Scale Rainfall Variability from Radar: Analysis of TRMM Ground Validation Datasets

View More View Less
  • 1 IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
Restricted access

Abstract

The main objective of this study is to assess the ability of radar-derived rainfall products to characterize the small-scale spatial variability of rainfall. The authors use independent datasets from high-quality dense rain gauge networks employed during the Texas and Florida Underflights (TEFLUN-B) and Tropical Rainfall Measuring Mission component of the Large-Scale Biosphere–Atmosphere (TRMM-LBA) field experiments conducted by NASA in 1998 and 1999. A detailed comparison between gauge- and radar-derived spatial variability estimates is carried out by means of a correlation function, covariance, variogram, scaling characteristics, and variance reduction due to spatial averaging. Emphasis is given to the correlation function because it is involved in most of these statistics. The approach followed in the analysis addresses the problems associated with the traditional estimation methods and the recognized differences in the scales of observation. The performance of the radar-derived correlation function is evaluated in two ways: by direct comparison with gauge-derived correlation function and by quantifying its effect on one of the applications, that is, gauge sampling uncertainty estimation. Results show that, at separation distances shorter than about 5 km, radar-derived correlations are lower than those obtained from gauges. Three sources of uncertainty that may have caused the discrepancy between gauge- and radar-derived correlations are identified, and their effects are quantified to the extent possible. The error introduced in gauge sampling uncertainty estimates due to the use of radar-derived correlation function is within 30%. Discrepancies between gauge- and radar-rainfall fields are also observed in terms of the other spatial statistics.

Corresponding author address: Witold F. Krajewski, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242-1585. witold-krajewski@uiowa.edu

Abstract

The main objective of this study is to assess the ability of radar-derived rainfall products to characterize the small-scale spatial variability of rainfall. The authors use independent datasets from high-quality dense rain gauge networks employed during the Texas and Florida Underflights (TEFLUN-B) and Tropical Rainfall Measuring Mission component of the Large-Scale Biosphere–Atmosphere (TRMM-LBA) field experiments conducted by NASA in 1998 and 1999. A detailed comparison between gauge- and radar-derived spatial variability estimates is carried out by means of a correlation function, covariance, variogram, scaling characteristics, and variance reduction due to spatial averaging. Emphasis is given to the correlation function because it is involved in most of these statistics. The approach followed in the analysis addresses the problems associated with the traditional estimation methods and the recognized differences in the scales of observation. The performance of the radar-derived correlation function is evaluated in two ways: by direct comparison with gauge-derived correlation function and by quantifying its effect on one of the applications, that is, gauge sampling uncertainty estimation. Results show that, at separation distances shorter than about 5 km, radar-derived correlations are lower than those obtained from gauges. Three sources of uncertainty that may have caused the discrepancy between gauge- and radar-derived correlations are identified, and their effects are quantified to the extent possible. The error introduced in gauge sampling uncertainty estimates due to the use of radar-derived correlation function is within 30%. Discrepancies between gauge- and radar-rainfall fields are also observed in terms of the other spatial statistics.

Corresponding author address: Witold F. Krajewski, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242-1585. witold-krajewski@uiowa.edu

Save