• Aigner, S., 1952. Die Temperaturminima im Gstettnerboden bei Lunz am See, Niederösterreich (The minimum temperatures in the Gstettner basin near Lunz, Lower Austria). Wetter Leben Special Issue,. 3437.

    • Search Google Scholar
    • Export Citation
  • Bhumralkar, C. M., 1975. Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor 14:12461258.

    • Search Google Scholar
    • Export Citation
  • Clements, C. B., C. D. Whiteman, and J. D. Horel, 2003. Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J. Appl. Meteor 42:752768.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1988. The force–restore model for surface temperatures and its generalizations. J. Climate 1:10861097.

  • Eisenbach, S., B. Pospichal, C. D. Whiteman, R. Steinacker, and M. Dorninger, 2003. Classification of cold air pool events in the Gstettneralm, a sinkhole in the Eastern Alps. Extended Abstracts, Int. Conf. on Alpine Meteorology and MAP-Meeting, Brig, Switzerland, MeteoSwiss, Publication 66, 157–160. [Available from MeteoSwiss, Krähbülstrasce 58, Postfach 514, Ch-8044, Zurich, Switzerland.].

    • Search Google Scholar
    • Export Citation
  • Geiger, R., 1965. The Climate Near the Ground. Harvard University Press, 482 pp.

  • Holtslag, A. A. M., and H. A. R. de Bruin, 1988. Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor 27:689704.

    • Search Google Scholar
    • Export Citation
  • Iijima, Y., and M. Shinoda, 2000. Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. Int. J. Climatol 20:14711483.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., T. Kuwagata, and S. Haginoya, 1989. Heat budget analysis of nocturnal cooling and daytime heating in a basin. J. Atmos. Sci 46:29172933.

    • Search Google Scholar
    • Export Citation
  • Lauscher, F., 1937. Grundlagen des Strahlungsklimas der Lunzer Kleinklimastationen (Fundamentals of the radiation climate of the Lunz microclimate stations). Jahrbuch der Zentralanstalt für Meteorologie u. Geodynamik (Vienna), Suppl. 4 124.

    • Search Google Scholar
    • Export Citation
  • Litschauer, D., 1962. Untersuchung der Entwicklung von Kaltluftseen in Dolinen- und Beckenlagen (Investigation of the development of cool air pools in sinkholes and basins). Ph.D. dissertation, University of Vienna, 129 pp.

    • Search Google Scholar
    • Export Citation
  • Magono, C., C. Nakamura, and Y. Yoshida, 1982. Nocturnal cooling of the Moshiri Basin, Hokkaido in midwinter. J. Meteor. Soc. Japan 60:11061116.

    • Search Google Scholar
    • Export Citation
  • Maki, M., and T. Harimaya, 1988. The effect of advection and accumulation of downslope cold air on nocturnal cooling in basins. J. Meteor. Soc. Japan 66:581597.

    • Search Google Scholar
    • Export Citation
  • Maki, M., T. Harimaya, and K. Kikuchi, 1986. Heat budget studies on nocturnal cooling in a basin. J. Meteor. Soc. Japan 64:727740.

  • Marks, D., and J. Dozier, 1979. A clear-sky longwave radiation model for remote alpine areas. Arch. Meteor. Geophys. Bioklimatol B27:159187.

    • Search Google Scholar
    • Export Citation
  • Petkovšek, Z., and J. Rakovec, 1983. Modeling of cool pool dissipation. Razprave—Papers (Ljubljana) 27:5363.

  • Pielke, R. A., 1984. Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Pospichal, B., S. Eisenbach, C. D. Whiteman, R. Steinacker, and M. Dorninger, 2003. Observations of the cold air outflow from a basin cold pool through a low pass. Extended Abstracts, Int. Conf. on Alpine Meteorology and MAP-Meeting, Brig, Switzerland, MeteoSwiss, Publication 66, 153–156. [Available from MeteoSwiss, Krähbülstrasse 58, Postfach 514, CH-8044, Zurich, Switzerland.].

    • Search Google Scholar
    • Export Citation
  • Rakovec, J., J. Merše, S. Jernej, and B. Paradiž, 2002. Turbulent dissipation of the cold-air pool in a basin: Comparison of observed and simulated development. Meteor. Atmos. Phys 79:195213.

    • Search Google Scholar
    • Export Citation
  • Sauberer, F., 1947. Kleinklimatische Niederschlagsuntersuchungen im Lunzer Gebiet (Microclimatic precipitation investigations in the Lunz area). Die Umwelt 2:410415.

    • Search Google Scholar
    • Export Citation
  • Sauberer, F., and I. Dirmhirn, 1954. Über die Entstehung der extremen Temperaturminima in der Doline Gstettner-Alm (On the occurrence of extreme temperature minimums in the Gstettner-Alm Doline). Arch. Meteor. Geophys. Bioklimatol 5B:307326.

    • Search Google Scholar
    • Export Citation
  • Sauberer, F., and I. Dirmhirn, 1956. Weitere Untersuchungen über die Kaltluftansammungen in der Doline Gstettner-Alm bei Lunz im Niederösterreich (Further investigations of the cold air buildup in the Gstettner-Alm doline near Lunz in lower Austria). Wetter Leben 8:187196.

    • Search Google Scholar
    • Export Citation
  • Schmidt, W., 1930. Die tiefsten Minimumtemperaturen in Mitteleuropa (The lowest minimum temperatures in central Europe). Die Naturwissenschaften 18:367369.

    • Search Google Scholar
    • Export Citation
  • Schmidt, W., 1933. Kleinklimatische Beobachtungen in Österreich (Microclimatic observations in Austria). Geogr. Jahresbericht Österreich 16:5359.

    • Search Google Scholar
    • Export Citation
  • Shelton, J. S., 1966. Geology Illustrated. W. H. Freeman, 434 pp.

  • Steinacker, R., M. Dorninger, S. Eisenbach, A. M. Holzer, B. Pospichal, C. D. Whiteman, and E. Mursch-Radlgruber, 2002. A sinkhole field experiment in the eastern Alps. Preprints, 10th Conf. on Mountain Meteorology, Park City, UT, Amer. Meteor. Soc., 91–92.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer, 670 pp.

  • Vrhovec, T., 1991. A cold air lake formation in a basin—A simulation with a mesoscale numerical model. Meteor. Atmos. Phys 46:9199.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., T. B. McKee, and J. C. Doran, 1996. Boundary layer evolution within a canyonland basin. Part I: Mass, heat, and moisture budgets from observations. J. Appl. Meteor 35:21452161.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., J. M. Hubbe, and W. J. Shaw, 2000. Evaluation of an inexpensive temperature datalogger for meteorological applications. J. Atmos. Oceanic Technol 17:7781.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. Eisenbach, B. Pospichal, and R. Steinacker, 2004. Comparison of vertical soundings and sidewall air temperature measurements in a small Alpine basin. J. Appl. Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Yoshino, M. M., 1984. Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal 8.3:235250.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 697 310 6
PDF Downloads 361 176 2

Minimum Temperatures, Diurnal Temperature Ranges, and Temperature Inversions in Limestone Sinkholes of Different Sizes and Shapes

View More View Less
  • a Pacific Northwest National Laboratory, Richland, Washington
  • | b Central Institute for Meteorology and Geodynamics, Vienna, Austria
  • | c Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Restricted access

Abstract

Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the Hetzkogel Plateau near Lunz, Austria (1300 m MSL), have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths, and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as −28.5°C. A surprising finding is that temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controlling cooling for basins in this size range in near-calm, clear-sky conditions and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.

Corresponding author address: C. David Whiteman, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352. dave.whiteman@pnl.gov

Abstract

Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the Hetzkogel Plateau near Lunz, Austria (1300 m MSL), have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths, and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as −28.5°C. A surprising finding is that temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controlling cooling for basins in this size range in near-calm, clear-sky conditions and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.

Corresponding author address: C. David Whiteman, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352. dave.whiteman@pnl.gov

Save