Physical Characterization of Tropical Oceanic Convection Observed in KWAJEX

Sandra E. Yuter Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Sandra E. Yuter in
Current site
Google Scholar
PubMed
Close
,
Robert A. Houze Jr. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
,
Eric A. Smith NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Eric A. Smith in
Current site
Google Scholar
PubMed
Close
,
Thomas T. Wilheit Department of Meteorology, Texas A&M University, College Station, Texas

Search for other papers by Thomas T. Wilheit in
Current site
Google Scholar
PubMed
Close
, and
Edward Zipser Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Edward Zipser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. Coordinated datasets were collected by three aircraft, one ship, five upper-air sounding sites, and a variety of continuously recording remote and in situ surface-based sensors, including scanning Doppler radars, profilers, disdrometers, and rain gauges. This paper describes the physical characterization of the Kwajalein cloud population that has emerged from analyses of datasets that were obtained during KWAJEX and combined with long-term TRMM ground validation site observations encompassing three rainy seasons. The spatial and temporal dimensions of the precipitation entities exhibit a lognormal probability distribution, as has been observed over other parts of the tropical ocean. The diurnal cycle of the convection is also generally similar to that seen over other tropical oceans. The largest precipitating cloud elements—those with rain areas exceeding 14 000 km2—have the most pronounced diurnal cycle, with a maximum frequency of occurrence before dawn; the smallest rain areas are most frequent in the afternoon. The large systems exhibited stratiform rain areas juxtaposed with convective regions. Frequency distributions of dual-Doppler radar data showed narrow versus broad spectra of divergence in the stratiform and convective regions, respectively, as expected because strong up- and downdrafts are absent in the stratiform regions. The dual-Doppler profiles consistently showed low-level convergence and upper-level divergence in convective regions and midlevel convergence sandwiched between lower- and upper-level divergence in stratiform regions. However, the magnitudes of divergence are sensitive to assumptions made in classifying the radar echoes as convective or stratiform. This sensitivity implies that heating profiles derived from satellite radar data will be sensitive to the details of the scheme used to separate convective and stratiform rain areas. Comparison of airborne passive microwave data with ground-based radar data indicates that the pattern of scattering of 85-GHz radiance by ice particles in the upper portions of KWAJEX precipitating clouds is poorly correlated with the precipitation pattern at lower levels while the emission channels (10 and 19 GHz) have brightness temperature patterns that closely correspond to the lower-level precipitation structure. In situ ice particle imagery obtained by aircraft at upper levels (∼11 km) shows that the concentrations of ice particles of all densities are greater in the upper portions of active convective rain regions and lower in the upper portions of stratiform regions, probably because the active updrafts convey the particles to upper levels, whereas in the stratiform regions sedimentation removes the larger ice particles over time. Low-level aircraft flying in the rain layer show similar total drop concentrations in and out of convective cells, but they also show a sudden jump in the concentration of larger raindrops at the boundaries of the cells, indicating a discontinuity in growth processes such as coalescence at the cell boundary.

Corresponding author address: Prof. Sandra Yuter, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. yuter@atmos.washington.edu

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. Coordinated datasets were collected by three aircraft, one ship, five upper-air sounding sites, and a variety of continuously recording remote and in situ surface-based sensors, including scanning Doppler radars, profilers, disdrometers, and rain gauges. This paper describes the physical characterization of the Kwajalein cloud population that has emerged from analyses of datasets that were obtained during KWAJEX and combined with long-term TRMM ground validation site observations encompassing three rainy seasons. The spatial and temporal dimensions of the precipitation entities exhibit a lognormal probability distribution, as has been observed over other parts of the tropical ocean. The diurnal cycle of the convection is also generally similar to that seen over other tropical oceans. The largest precipitating cloud elements—those with rain areas exceeding 14 000 km2—have the most pronounced diurnal cycle, with a maximum frequency of occurrence before dawn; the smallest rain areas are most frequent in the afternoon. The large systems exhibited stratiform rain areas juxtaposed with convective regions. Frequency distributions of dual-Doppler radar data showed narrow versus broad spectra of divergence in the stratiform and convective regions, respectively, as expected because strong up- and downdrafts are absent in the stratiform regions. The dual-Doppler profiles consistently showed low-level convergence and upper-level divergence in convective regions and midlevel convergence sandwiched between lower- and upper-level divergence in stratiform regions. However, the magnitudes of divergence are sensitive to assumptions made in classifying the radar echoes as convective or stratiform. This sensitivity implies that heating profiles derived from satellite radar data will be sensitive to the details of the scheme used to separate convective and stratiform rain areas. Comparison of airborne passive microwave data with ground-based radar data indicates that the pattern of scattering of 85-GHz radiance by ice particles in the upper portions of KWAJEX precipitating clouds is poorly correlated with the precipitation pattern at lower levels while the emission channels (10 and 19 GHz) have brightness temperature patterns that closely correspond to the lower-level precipitation structure. In situ ice particle imagery obtained by aircraft at upper levels (∼11 km) shows that the concentrations of ice particles of all densities are greater in the upper portions of active convective rain regions and lower in the upper portions of stratiform regions, probably because the active updrafts convey the particles to upper levels, whereas in the stratiform regions sedimentation removes the larger ice particles over time. Low-level aircraft flying in the rain layer show similar total drop concentrations in and out of convective cells, but they also show a sudden jump in the concentration of larger raindrops at the boundaries of the cells, indicating a discontinuity in growth processes such as coalescence at the cell boundary.

Corresponding author address: Prof. Sandra Yuter, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. yuter@atmos.washington.edu

Save
  • Adkins, W. and S. E. Yuter. 2001. Report on potential tropical open ocean precipitation validation sitesNASA Global Precipitation Mission Reports NASA/TM 2002–210010, 77 pp. [Available online at gpmscience.gsfc.nasa.gov.].

  • Arakawa, A. and W. H. Schubert. 1974. Interaction of a cumulus ensemble with the large-scale environment: Part I. J. Atmos. Sci. 31:674701.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto. 1998. Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. URSI-F Symp. on Wave Propagation and Remote Sensing, Aveiro, Portugal, Institute for the Protection and the Security of the Citizen, Directorate General Joint Research Centre of the European Commission, 143–146.

  • Battan, L. J. 1973. Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Betts, A. K., J. D. Fuentes, M. Garstang, and J. H. Ball. 2002. Surface diurnal cycle and boundary-layer structure over Rondônia during the rainy season. J. Geophys. Res. 107.8065, doi:1029/2001JD000356.

    • Search Google Scholar
    • Export Citation
  • Bolen, S. M. and V. Chandrasekar. 2000. Quantitative cross validation of space-based and ground-based radar observations. J. Appl. Meteor. 39:20712079.

    • Search Google Scholar
    • Export Citation
  • Bolton, D. 1980. The computation of equivalent potential temperature. Mon. Wea. Rev. 108:10461053.

  • Burghart, C., P. J. Wyngaard, P. H. Herzegh, and J. W. Wilson. 1991. A program for optimization of meteorological radar scanning. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 573–576.

  • Byers, H. R. 1948. The use of radar in determining the amount of rain falling over a small area. Eos, Trans. Amer. Geophys. Union 29:187196.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S. and R. A. Houze Jr.. 1997. Diurnal variation of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc. 123:357388.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes. 1996. Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci. 53:13801409.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D. and R. A. Houze Jr.. 1984. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci. 41:933960.

    • Search Google Scholar
    • Export Citation
  • Contreras, R. F., W. J. Plant, W. C. Keller, K. Hayes, and J. Nystuen. 2003. Effects of rain on Ku band backscatter from the ocean. J. Geophys. Res. 108.3165, doi:10.1029/2001JC001255.

    • Search Google Scholar
    • Export Citation
  • Dennis, A. S. and F. G. Fernald. 1963. Frequency distributions of shower sizes. J. Appl. Meteor. 2:767769.

  • Durden, S. L., E. Im, F. K. Li, W. Ricketts, A. Tanner, and W. Wilson. 1994. ARMAR: An airborne rain-mapping radar. J. Atmos. Oceanic Technol. 11:727737.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., E. Im, Z. S. Haddad, and L. Li. 2003. Comparison of TRMM precipitation radar and airborne radar data. J. Appl. Meteor. 42:769774.

    • Search Google Scholar
    • Export Citation
  • Elliot, W. P., R. J. Moss, and W. H. Blackmore. 2002. Recent changes in NWS upper-air observations with emphasis on changes from VIZ to Vaisala radiosondes. Bull. Amer. Meteor. Soc. 83:10031017.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., C. R. Williams, W. L. Clark, P. E. Johnson, and D. A. Carter. 2002. Profiler contributions to Tropical Rainfall Measuring Mission (TRMM) ground validation field campaigns. J. Atmos. Oceanic Technol. 19:843863.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger. 2002. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci. 59:34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M. and R. Fulton. 1988. Comparison of high-altitude remote aircraft measurements with radar structure of an Oklahoma thunderstorm: Implications for precipitation estimation from space. Mon. Wea. Rev. 116:11571174.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W. and J. Bordan. 1954. Errors inherent in radar measurements of rainfall at attenuating wavelengths. J. Meteor. 11:5867.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V. 1974. Ice Physics. Oxford Press, 837 pp.

  • Hobbs, P. V. 2000. Summary of University of Washington Convair-580 research flights for KWAJEX/TRMM in the Marshall Islands (25 July–15 September 1999). University of Washington KWAJEX/TRMM Field Project Tech. Rep., 84 pp.

  • Houze Jr., R. A. 1973. A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci. 30:11121123.

  • Houze Jr., R. A. 1977. Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev. 105:15401567.

  • Houze Jr., R. A. 1982. Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan 60:396410.

  • Houze Jr., R. A. 1989. Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc. 115:425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc. 78:21792196.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. and C-P. Cheng. 1977. Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev. 105:964980.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. and A. K. Betts. 1981. Convection in GATE. Rev. Geophys. Space Phys. 19:541576.

  • Houze Jr., R. A., S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams. 2004. Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor. 43:11141132.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto. 2000. Rain-profiling algorithm for TRMM precipitation radar. J. Appl. Meteor. 39:20382052.

    • Search Google Scholar
    • Export Citation
  • Joss, J. and E. G. Gori. 1976. The parameterization of raindrop size distributions. Riv. Ital. Geofis 3:275283.

  • Joss, J. Coauthors 1998. Operational Use of Radar for Precipitation Measurements in Switzerland. vdf Hochschulverlag AG an der ETH Zürich, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Kaneyasu, N., P. V. Hobbs, Y. Ishizaka, and G-W. Qian. 2001. Aerosol properties around marine tropical cumulus. J. Geophys. Res. 106:1443514445.

    • Search Google Scholar
    • Export Citation
  • Kim, M-J., J. A. Weinman, and R. A. Houze Jr.. 2004. Validation of maritime rainfall retrievals from TRMM microwave radiometer. J. Appl. Meteor. 43:847859.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E. Coauthors 2004. TRMM common microphysics products: A tool for evaluating spaceborne precipitation retrieval algorithms. J. Appl. Meteor. 43:15981618.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. and L. Giglio. 1994. A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor. 33:318.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shue, and J. Simpson. 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol. 15:809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. Coauthors 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor. 39:19651982.

    • Search Google Scholar
    • Export Citation
  • Lawrence, J. R. and S. D. Gedzelman. 2003. Tropical ice core isotopes: Do they reflect changes in storm activity? Geophys. Res. Lett. 30.1072, doi:10.1029/2002GL015906.

    • Search Google Scholar
    • Export Citation
  • Lin, X. and R. H. Johnson. 1996. Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci. 53:33673383.

    • Search Google Scholar
    • Export Citation
  • Loehrer, S. M., T. A. Edmands, and J. A. Moore. 1996. TOGA COARE upper-air sounding data archive: Development and quality control procedures. Bull. Amer. Meteor. Soc. 77:26512671.

    • Search Google Scholar
    • Export Citation
  • López, R. E. 1977. The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev. 105:865872.

  • Lucas, C., E. J. Zipser, and M. A. LeMone. 1994. Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci. 51:31833193.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and B. S. Ferrier. 2000. Sensitivity of tropical west Pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci. 57:23512373.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E. 1993. Gregarious tropical convection. J. Atmos. Sci. 50:20262037.

  • Mapes, B. E. and R. A. Houze Jr.. 1992. Satellite-observed cloud clusters in the TOGA COARE domain. TOGA Notes, April, 5–7.

  • Mapes, B. E. and R. A. Houze Jr.. 1995. Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci. 52:18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. E. Ciesielski, and R. H. Johnson. 2003. Sampling errors in rawinsonde-array budgets. J. Atmos. Sci. 60:26972714.

  • Marks, D. A. Coauthors 2000. Climatological processing and product development for the TRMM Ground Validation Program. Phys. Chem. Earth 25B:871876.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R. and T. Kozu. 1990. Spaceborne Weather Radar. Artech House, 197 pp.

  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski. 2000. Use of surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor. 39:20532070.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A. and E. A. Smith. 1988. Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: Model description. J. Appl. Meteor. 27:10551073.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., E. A. Smith, and G. J. Tripoli. 1993. Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part II: Emission source and generalized weighting function properties of a time-dependent cloud-radiation model. J. Appl. Meteor. 32:1739.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W. and E. J. Zipser. 2003. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate 16:14561475.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. 1971. A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan 49:744756.

  • Rangno, A. L. and P. V. Hobbs. 2004. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. 131:639674.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J. and E. E. Recker. 1971. Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci. 28:11171133.

    • Search Google Scholar
    • Export Citation
  • Riehl, H. and J. S. Malkus. 1958. On the heat balance in the equatorial trough zone. Geophysica 6:503538.

  • Schumacher, C. and R. A. Houze Jr.. 2000. Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor. 39:21512164.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. and R. A. Houze Jr.. 2003a. Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate 16:17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. and R. A. Houze Jr.. 2003b. The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor. 42:15191524.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas. 2004. The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci. 61:13411358.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E. and P. Joe. 1994. Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol. 11:874887.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele. 1997. Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc. 78:28172836.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A. and A. Mugnai. 1988. Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part II: Results and analysis. J. Appl. Meteor. 27:10741091.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A. and A. Mugnai. 1989. Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part III: Influence of large ice particles. J. Meteor. Soc. Japan 67:739755.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang. 1992. Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud radiation model. J. Appl. Meteor. 31:506531.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis. 2004. Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev. 132:422444.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., R. E. Hood, F. J. LaFontaine, E. A. Smith, R. Platt, J. Galliano, V. L. Griffin, and E. Lobl. 1994. High resolution imaging of rain systems with the Advanced Microwave Precipitation Radiometer. J. Atmos. Oceanic Technol. 11:849857.

    • Search Google Scholar
    • Export Citation
  • Spooner, C. L. 2001. Dual-Doppler analysis of an oceanic tropical mesoscale system during the Kwajalein Experiment (KWAJEX). M.S. thesis, Atmospheric Sciences Group, Texas Tech University, 112 pp.

  • Steiner, M., R. A. Houze Jr., and S. E. Yuter. 1995. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor. 34:19782007.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli. 2002. Microphysical observations of tropical clouds. J. Appl. Meteor. 41:97117.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. Coauthors 2001. Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor. 40:957982.

    • Search Google Scholar
    • Export Citation
  • Tesmer, J. R. and T. T. Wilheit. 1998. An improved microwave radiative transfer model for tropical oceanic precipitation. J. Atmos. Sci. 55:16741688.

    • Search Google Scholar
    • Export Citation
  • U.S. CLIVAR Pan American Implementation Panel 2002. U.S. CLIVAR Pan American research: A scientific prospectus and implementation plan. U.S. CLIVAR Office, 58 pp.

  • Wilheit, T. T. 1986. Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc. 67:12261232.

  • Williams, M. and R. A. Houze Jr.. 1987. Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev. 115:505519.

    • Search Google Scholar
    • Export Citation
  • Yanai, M. S., S. Esbensen, and J-H. Chu. 1973. Determination of bulk properties of tropical clouds clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30:611627.

    • Search Google Scholar
    • Export Citation
  • Yang, S. and E. A. Smith. 2000. Vertical structure and transient behavior of convective-stratiform heating in TOGA-COARE from combined satellite-sounding analysis. J. Appl. Meteor. 39:14911513.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. and R. A. Houze Jr.. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev. 123:19411963.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. and R. A. Houze Jr.. 1997. Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor. 36:847867.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J. 1977. Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev. 105:15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 86 12
PDF Downloads 220 89 9