Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA

D. D. Turner Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by D. D. Turner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new approach to retrieve microphysical properties from mixed-phase Arctic clouds is presented. This mixed-phase cloud property retrieval algorithm (MIXCRA) retrieves cloud optical depth, ice fraction, and the effective radius of the water and ice particles from ground-based, high-resolution infrared radiance and lidar cloud boundary observations. The theoretical basis for this technique is that the absorption coefficient of ice is greater than that of liquid water from 10 to 13 μm, whereas liquid water is more absorbing than ice from 16 to 25 μm. MIXCRA retrievals are only valid for optically thin (τvisible < 6) single-layer clouds when the precipitable water vapor is less than 1 cm. MIXCRA was applied to the Atmospheric Emitted Radiance Interferometer (AERI) data that were collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment from November 1997 to May 1998, where 63% of all of the cloudy scenes above the SHEBA site met this specification. The retrieval determined that approximately 48% of these clouds were mixed phase and that a significant number of clouds (during all 7 months) contained liquid water, even for cloud temperatures as low as 240 K. The retrieved distributions of effective radii for water and ice particles in single-phase clouds are shown to be different than the effective radii in mixed-phase clouds.

Corresponding author address: Dave Turner, Climate Physics Group, MS K9-24, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352. dave.turner@pnl.gov

Abstract

A new approach to retrieve microphysical properties from mixed-phase Arctic clouds is presented. This mixed-phase cloud property retrieval algorithm (MIXCRA) retrieves cloud optical depth, ice fraction, and the effective radius of the water and ice particles from ground-based, high-resolution infrared radiance and lidar cloud boundary observations. The theoretical basis for this technique is that the absorption coefficient of ice is greater than that of liquid water from 10 to 13 μm, whereas liquid water is more absorbing than ice from 16 to 25 μm. MIXCRA retrievals are only valid for optically thin (τvisible < 6) single-layer clouds when the precipitable water vapor is less than 1 cm. MIXCRA was applied to the Atmospheric Emitted Radiance Interferometer (AERI) data that were collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment from November 1997 to May 1998, where 63% of all of the cloudy scenes above the SHEBA site met this specification. The retrieval determined that approximately 48% of these clouds were mixed phase and that a significant number of clouds (during all 7 months) contained liquid water, even for cloud temperatures as low as 240 K. The retrieved distributions of effective radii for water and ice particles in single-phase clouds are shown to be different than the effective radii in mixed-phase clouds.

Corresponding author address: Dave Turner, Climate Physics Group, MS K9-24, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352. dave.turner@pnl.gov

Save
  • Alvarez, R. J., W. L. Eberhard, J. M. Intrieri, C. J. Grund, and S. P. Sandberg. 1998. A depolarization and backscatter lidar for unattended operation in varied meteorological conditions. Proc. 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 140–144.

  • Barrie, L. A. and R. M. Hoff. 1986. Five years of air chemistry observations in the Canadian Arctic. Atmos. Environ. 19:19952010.

  • Bevington, P. R. and D. K. Robinson. 1992. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, 328 pp.

  • Brown, P. R. A. and P. N. Francis. 1995. Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol. 12:410414.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A. and M. J. Iacono. 1995. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J. Geophys. Res. 100:1651916535.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M. Coauthors 2004. High clouds microphysical retrievals intercomparison. Proc. 14th Atmospheric Radiation Measurement (ARM) Program Science Team Meeting, Albuquerque, NM, U.S. Dept. of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf14/extended_abs/comstock-jm.pdf.].

  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm. 1996. Overview of Arctic cloud and radiation characteristics. J. Climate 9:17311764.

    • Search Google Scholar
    • Export Citation
  • Daniel, J. S., S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madeson. 2002. Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique. J. Geophys. Res. 107.4599, doi:10.1029/2001JD000688.

    • Search Google Scholar
    • Export Citation
  • DeSlover, D. H., W. L. Smith, P. K. Piironen, and E. W. Eloranta. 1999. A methodology for measuring cirrus cloud visible-to-infrared spectral optical depth ratios. J. Atmos. Oceanic Technol. 16:251262.

    • Search Google Scholar
    • Export Citation
  • Dong, X. and G. G. Mace. 2003. Arctic stratus cloud properties and radiative forcing at the ARM NSA site. J. Climate 16:445461.

  • Dong, X., G. G. Mace, P. Minnis, and D. F. Young. 2001. Arctic stratus cloud properties and their effect on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res. 106:1529715312.

    • Search Google Scholar
    • Export Citation
  • Downing, H. D. and D. Williams. 1975. Optical constants of water in the infrared. J. Geophys. Res. 80:16561661.

  • Frisch, A. S., C. W. Fairall, and J. B. Snider. 1995. Measurements of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and microwave radiometer. J. Atmos. Sci. 52:27882799.

    • Search Google Scholar
    • Export Citation
  • Girard, E. and J-P. Blanchet. 2001. Simulation of Arctic diamond dust, ice fog, and thin stratus using an explicit aerosol–cloud–radiation model. J. Atmos. Sci. 58:11991221.

    • Search Google Scholar
    • Export Citation
  • Grant, E. H., J. Buchanan, and H. F. Cook. 1957. Dielectric behavior of water at microwave frequencies. J. Chem. Phys. 26:641651.

  • Gregory, D. and D. Morris. 1996. The sensitivity to climate simulations to the specification of mixed phase clouds. Climate Dyn. 12:641651.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C. and S. G. Warren. 1999. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104:3169731709.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis. 1999. Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res. 51:4575.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F. 1980. Thermal radiation in Arctic stratus clouds. Quart. J. Roy. Meteor. Soc. 106:771780.

  • Hobbs, P. V., A. L. Rangno, M. Shupe, and T. Uttal. 2001. Airborne studies of cloud structures over the Arctic Ocean and comparisons with retrievals from ship-based remote sensing measurements. J. Geophys. Res. 106:1502915044.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., B. A. Callander, and S. V. Varney. 1992. Climate Change 1992: The Supplementary Report of the IPCC Scientific Assessment. Cambridge University Press, 200 pp.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty. 2002. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. 107.8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth. 2000. Cloud resolving simulations of a mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci. 57:21052117.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O. Coauthors 2004. Atmospheric Emitted Radiance Interferometer (AERI). Part I: Instrument design. J. Atmos. Oceanic Technol. 21:17631776.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen. 2001. An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE.ACE. J. Geophys. Res. 106:1498915014.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J. and D. H. Layton. 1987. Millimeter wave properties of the atmosphere: Laboratory studies and propagation modeling. National Telecommunications and Information Administration Rep. 87-24, 74 pp.

  • Liebe, H. J., G. A. Hufford, and T. Manabe. 1991. A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves 12:659675.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C. and B. M. Lesht. 1996. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM cloud and radiation testbed in the U.S. southern Great Plains. Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS), Lincoln, NB, IEEE, 1675–1677.

  • Marty, C. Coauthors 2003. Downward longwave irradiance uncertainty under Arctic atmospheres: Measurements and modeling. J. Geophys. Res. 108.4358, doi:10.1029/2002JD002937.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y. 1999. Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters. J. Geophys. Res. 104:1674116753.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. V. Korolev, and A. J. Heymsfield. 2002. Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol. 19:10031018.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown. 2001. The marine-atmospheric emitted radiance interferometer: A high-accuracy, seagoing infrared spectrometer. J. Atmos. Oceanic Technol. 18:9941013.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L. 2002. Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci. 59:23302346.

    • Search Google Scholar
    • Export Citation
  • Neshyba, S. P., T. C. Grenfell, and S. G. Warren. 2003. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates. J. Geophys. Res. 108.4448, doi:10.1029/2002JD003302.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O. 1998. Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci. 55:20162038.

  • Rangno, A. L. and P. V. Hobbs. 2001. Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res. 106:1506515075.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D. 2000. Inverse Methods for Atmospheric Sounding. World Scientific, 238 pp.

  • Rosenkranz, P. W. 1998. Water vapor microwave continuum absorption: A comparison between measurements and models. Radio Sci. 33:919928.

    • Search Google Scholar
    • Export Citation
  • Sassen, K. and J. M. Comstock. 2001. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci. 58:21132127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K. and G. G. Mace. 2002. Ground-based remote sensing of cirrus clouds. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 168–195.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, S. Y. Matrosov, and A. S. Frisch. 2001. Cloud water contents and hydrometeor sizes during the FIRE-Arctic Clouds Experiment. J. Geophys. Res. 106:1501515028.

    • Search Google Scholar
    • Export Citation
  • Sirois, A. and L. A. Barrie. 1999. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995. J. Geophys. Res. 104:1159911618.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., X. L. Ma, S. A. Ackerman, H. E. Revercomb, and R. O. Knuteson. 1993. Remote sensing cloud properties from high spectral resolution infrared observations. J. Atmos. Sci. 50:17081720.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell. 1999. The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol. 16:323333.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S-C. Tsay, W. Wiscombe, and K. Jayaweera. 1988. A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27:25022509.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak. 1999. Review of science issues, deployment strategy, and status of the ARM North Slope of Alaska–Adjacent Arctic Ocean climate research site. J. Climate 12:4663.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L. 1994. Remote Sensing of the Lower Atmosphere: An Introduction. Oxford University Press, 523 pp.

  • Sun, Z. and K. P. Shine. 1995. Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds. J. Climate 8:18741888.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D. 2003. Microphysical properties of single and mixed-phase Arctic clouds derived from ground-based AERI observations. Ph.D. thesis, University of Wisconsin—Madison, 167 pp. [Available online at http://www.ssec.wisc.edu/library/turnerdissertation.pdf.].

  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang. 2003. Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor. 42:701715.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D. Coauthors 2004. The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci. 61:26572675.

    • Search Google Scholar
    • Export Citation
  • Uttal, T. Coauthors 2002. Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc. 83:255275.

  • Warren, S. 1984. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23:12061225.

  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov. 2001. Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean Project. J. Geophys. Res. 106:3201932030.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J. 1980. Improved Mie scattering algorithms. Appl. Opt. 19:15051509.

  • Yang, P., B. C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S. C. Tsay, D. M. Winker, and S. L. Nasiri. 2001. Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer 70:473504.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H-L. Huang, S-C. Tsay, and S. A. Ackerman. 2003. Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer 79–80:11591169.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 673 153 14
PDF Downloads 498 86 4