A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories

Jerry M. Straka School of Meteorology, The University of Oklahoma, Norman, Oklahoma

Search for other papers by Jerry M. Straka in
Current site
Google Scholar
PubMed
Close
and
Edward R. Mansell Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

Corresponding author address: Dr. Edward Mansell, National Severe Storms Laboratory/CIMMS, 1313 Halley Circle, Norman, OK 73069. mansell@ou.edu

Abstract

A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

Corresponding author address: Dr. Edward Mansell, National Severe Storms Laboratory/CIMMS, 1313 Halley Circle, Norman, OK 73069. mansell@ou.edu

Save
  • Bailey, M. and J. Hallett. 2002. Nucleation effects on the habit of vapour grown ice crystals from −18 to −42°C. Quart. J. Roy. Meteor. Soc. 128:14611483.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X. 1967. Cloud droplet growth by collection. J. Atmos. Sci. 24:688701.

  • Berry, E. X. 1968. Modification of the warm rain process. Preprints, First National Conf. on Weather Modification, Albany, NY, Amer. Meteor. Soc., 81–88.

  • Bigg, E. K. 1953. The supercooling of water. Proc. Phys. Soc. London B66:688694.

  • Braham, R. R. 1968. Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc. 49:343353.

  • Bringi, V. N., K. Knupp, A. Detwiler, I. J. Caylor, and R. A. Black. 1997. Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev. 125:21312160.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth. 1998. Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci. 55:34173432.

    • Search Google Scholar
    • Export Citation
  • Clark, T. 1974. A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci. 31:142155.

  • Clark, T. 1976. Use of log-normal distributions for numerical calculations of condensation and collection. J. Atmos. Sci. 33:810821.

  • Cotton, W. R. 1972a. Numerical simulation of precipitation development in supercooled cumuli–Part I. Mon. Wea. Rev. 100:757763.

  • Cotton, W. R. 1972b. Numerical simulation of precipitation development in supercooled cumuli–Part II. Mon. Wea. Rev. 100:764784.

  • Cotton, W. R., M. A. Stephens, T. Nehrkorn, and G. J. Tripoli. 1982. The Colorado State University three-dimensional cloud/mesoscale model–1982. Part II: An ice phase parameterization. J. Rech. Atmos. 16:295320.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill. 1986. Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor. 25:16581680.

    • Search Google Scholar
    • Export Citation
  • Davis, C. I. and A. H. Auer Jr.. 1974. Use of isolated orographic clouds to establish the accuracy of diffusional ice crystal growth equations. Preprints, Conf. on Cloud Physics, Tucson, AZ, Amer. Meteor. Soc., 141–147.

  • Deardorff, J. W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor. 18:495527.

  • Dye, J. E., C. A. Knight, V. Toutenhoofd, and T. W. Cannon. 1974. The mechanism of precipitation formation in northeastern Colorado cumulus. III. Coordinated microphysical and radar observations and summary. J. Atmos. Sci. 31:21522159.

    • Search Google Scholar
    • Export Citation
  • Farley, R. D. 1987. Numerical modeling of hailstorms and hailstone growth. Part II: The role of low-density riming growth in hail production. J. Climate Appl. Meteor. 26:234254.

    • Search Google Scholar
    • Export Citation
  • Feingold, G. and Z. Levin. 1986. The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor. 25:13461364.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. L. Walko, B. Stevens, and W. R. Cotton. 1998. Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res. 47–48:505528.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S. 1994. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci. 51:249280.

  • Ferrier, B. S., W-K. Tao, and J. Simpson. 1995. A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci. 52:10011033.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H. 1962. The Physics of Rain Clouds. Cambridge University Press, 390 pp.

  • Foote, G. B. and H. W. Frank. 1983. Case study of a hailstorm in Colorado. Part III: Airflow from triple-Doppler measurements. J. Atmos. Sci. 40:686707.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen. 2004a. Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev. 132:18971916.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen. 2004b. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev. 132:26102627.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D. and H. R. Pruppacher. 1976. The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci. 33:19952006.

    • Search Google Scholar
    • Export Citation
  • Hallett, J. and S. C. Mossop. 1974. Production of secondary ice particles during the riming process. Nature 249:2628.

  • Helsdon Jr., J. H. and R. D. Farley. 1987. A numerical modeling study of a Montana thunderstorm: 2. Model results versus observations involving electrical aspects. J. Geophys. Res. 92:56615675.

    • Search Google Scholar
    • Export Citation
  • Helsdon Jr., J. H., W. A. Wojcik, and R. D. Farley. 2001. An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model. J. Geophys. Res. 106:11651192.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. and J. C. Pflaum. 1985. A quantitative assessment of the accuracy of techniques for calculating graupel growth. J. Atmos. Sci. 42:22642274.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V. 1990. Ice in clouds. Proc. Conf. on Cloud Physics, San Francisco, CA, Amer. Meteor. Soc., 600–606.

  • Hobbs, P. V. and A. L. Rangno. 1985. Ice particle concentrations in clouds. J. Atmos. Sci. 42:25232549.

  • Kessler, E. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Klemp, J. B. and R. B. Wilhelmson. 1978. Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci. 35:10971110.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y. and J. L. Holloway Jr.. 1967. Numerical integration of a nine-level global primitive equations model formulated by the box method. Mon. Wea. Rev. 95:509530.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P. 1991. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Methods Appl. Mech. Eng. 88:1774.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville. 1983. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor. 22:10651089.

    • Search Google Scholar
    • Export Citation
  • List, R. 1984. Smithsonian Meteorological Tables. 6th ed. Smithsonian Institution Press, 527 pp.

  • Liu, J. Y. and H. D. Orville. 1969. Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci. 26:12831298.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz. 1984. Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci. 41:28362848.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R. and W. D. Rust. 1998. The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., J. M. Straka, and C. L. Ziegler. 2001. A lightning parameterization for numerical cloud models. J. Appl. Meteor. 40:459478.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C. 1962. The density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc. 88:3050.

  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka. 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res. 107.4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J. 1971. The Physics of Clouds. Clarendon Press, 670 pp.

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton. 1992. New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor. 31:708721.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton. 1997. New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res. 45:339.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41:20522062.

  • Mossop, S. C. 1976. Production of secondary ice particles during the growth of graupel by riming. Quart. J. Roy. Meteor. Soc. 102:2544.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C. 1985. Secondary ice particle production during rime growth: The effect of drop size distribution and rimer velocity. Quart. J. Roy. Meteor. Soc. 111:11131124.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y. and T. Takahashi. 1973. The development of warm rain in a cumulus model. J. Atmos. Sci. 30:262277.

  • Orville, H. D. and F. J. Kopp. 1977. Numerical simulation of the life history of a hailstorm. J. Atmos. Sci. 34:15961618.

  • Passarelli, R. E. and R. C. Srivastava. 1979. A new aspect of snowflake aggregation theory. J. Atmos. Sci. 36:484493.

  • Potter, B. E. 1991. Improvements to a commonly used cloud microphysical bulk parameterization. J. Appl. Meteor. 30:10401042.

  • Pruppacher, H. R. and J. D. Klett. 1978. Microphysics of Clouds and Precipitation. Reidel, 774 pp.

  • Rangno, A. L. and P. V. Hobbs. 1991. Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc. 117:207241.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M. and A. J. Heymsfield. 1985. A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci. 42:22752279.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes. 1998. Explicit forcasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc. 124:10711107.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. and W. L. Woodley. 2000. Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature 405:440441.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A. and P. V. Hobbs. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci. 41:29492972.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. and V. Wiggert. 1969. Models of precipitating cumulus towers. Mon. Wea. Rev. 97:471489.

  • Smith, P. L. 2003. Raindrop size distributions: Exponential or gamma—Does the difference matter? J. Appl. Meteor. 42:10311034.

  • Straka, J. M. 1989. Hail growth in a highly glaciated central High Plains multi-cellular hailstorm. Ph.D. thesis, University of Wisconsin—Madison, 413 pp.

  • Straka, J. M. and J. R. Anderson. 1993a. Extension and application of a local, minimum aliasing method to multidimensional problems in limited-area domains. Mon. Wea. Rev. 121:29032918.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M. and J. R. Anderson. 1993b. Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci. 50:13291348.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M. and E. N. Rasmussen. 1997. Toward improving microphysical parameterizations of conversion processes. J. Appl. Meteor. 36:896902.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov. 2000. Bulk hydrometeor classification and quantifications using polarimetric radar data: Synthesis of relations. J. Appl. Meteor. 39:13411372.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, and M. McCumber. 1989. An ice-water saturation adjustment. Mon. Wea. Rev. 117:231235.

  • Thorpe, A. D. and B. J. Mason. 1966. The evaporation of ice spheres and ice crystals. Brit. J. Appl. Phys. 17:541548.

  • Tremback, C. J., J. Powell, W. R. Cotton, and R. A. Pielke. 1987. The forward-in-time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev. 115:540555.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., P. J. Flatau, and W. R. Cotton. 1990. Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci. 47:28712880.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington. 1995. New RAMS cloud microphysics parameterization. Part I: The single moment scheme. Atmos. Res. 38:2962.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L. and J. B. Klemp. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev. 110:504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L. and J. B. Klemp. 1984. The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev. 112:24792498.

    • Search Google Scholar
    • Export Citation
  • Wisner, C., H. D. Orville, and C. Meyers. 1972. A numerical model of a hail-bearing cloud. J. Atmos. Sci. 29:11601181.

  • Ziegler, C. L. 1985. Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci. 42:14871509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 756 232 18
PDF Downloads 366 90 5