AMSU-A Land Surface Emissivity Estimation for Numerical Weather Prediction Assimilation Schemes

Catherine Prigent Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique, Centre National de la Recherche Scientifique, Observatoire de Paris, Paris, France

Search for other papers by Catherine Prigent in
Current site
Google Scholar
PubMed
Close
,
Frédéric Chevallier European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Frédéric Chevallier in
Current site
Google Scholar
PubMed
Close
,
Fatima Karbou Centre National de la Recherche Scientifique, Centre d’Etude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by Fatima Karbou in
Current site
Google Scholar
PubMed
Close
,
Peter Bauer European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Bauer in
Current site
Google Scholar
PubMed
Close
, and
Graeme Kelly European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Graeme Kelly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes the work performed at the European Centre for Medium-Range Weather Forecasts (ECMWF) to estimate the microwave land surface emissivities at Advanced Microwave Sounding Unit (AMSU)-A frequencies within the specific context and constraint of operational assimilation. The emissivities are directly calculated from the satellite observations in clear-sky conditions using the surface skin temperature derived from ECMWF and the Radiative Transfer for the Television and Infrared Observation Satellite Operational Vertical Sounder (RTTOVS) model, along with the forecast model variables to estimate the atmospheric contributions. The results are analyzed, with special emphasis on the evaluation of the frequency and angular dependencies of the emissivities with respect to the surface characteristics. Possible extrapolation of the Special Sensor Microwave Imager (SSM/I) emissivities to those of the AMSU is considered. Direct calculation results are also compared with emissivity model outputs.

* Current affiliation: Centre National de la Recherche Scientifique, Laboratoire des Sciences du Climat et l’Environnement, Gif-sur-Yvette, France

Corresponding author address: Dr. Catherine Prigent, Centre National de la Recherche Scientifique, Laboratoire d’Etudes du Rayonnement et de la Matiere en Astrophysique, Observatoire de Paris, 61, Avenue de l’Observatoire, Paris, France. catherine.prigent@obspm.fr

Abstract

This study describes the work performed at the European Centre for Medium-Range Weather Forecasts (ECMWF) to estimate the microwave land surface emissivities at Advanced Microwave Sounding Unit (AMSU)-A frequencies within the specific context and constraint of operational assimilation. The emissivities are directly calculated from the satellite observations in clear-sky conditions using the surface skin temperature derived from ECMWF and the Radiative Transfer for the Television and Infrared Observation Satellite Operational Vertical Sounder (RTTOVS) model, along with the forecast model variables to estimate the atmospheric contributions. The results are analyzed, with special emphasis on the evaluation of the frequency and angular dependencies of the emissivities with respect to the surface characteristics. Possible extrapolation of the Special Sensor Microwave Imager (SSM/I) emissivities to those of the AMSU is considered. Direct calculation results are also compared with emissivity model outputs.

* Current affiliation: Centre National de la Recherche Scientifique, Laboratoire des Sciences du Climat et l’Environnement, Gif-sur-Yvette, France

Corresponding author address: Dr. Catherine Prigent, Centre National de la Recherche Scientifique, Laboratoire d’Etudes du Rayonnement et de la Matiere en Astrophysique, Observatoire de Paris, 61, Avenue de l’Observatoire, Paris, France. catherine.prigent@obspm.fr

Save
  • Aires, F., C. Prigent, W. B. Rossow, and M. Rothstein. 2001. A new neural network approach including first-guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature and emissivities over land from satellite microwave observations. J. Geophys. Res. 106:1488714907.

    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., A. Chanzy, and J-P. Wigneron. 1996. Surface temperature and soil moisture retrieval in the Sahel from airborne multifrequency microwave radiometry. IEEE Trans. Geosci. Remote Sens. 34:588600.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F. and G. Kelly. 2002. Model clouds as seen from space: Comparison with geostationary imagery in the 11-μm window channel. Mon. Wea. Rev. 130:712722.

    • Search Google Scholar
    • Export Citation
  • Deblonde, G. 2000. Evaluation of FASTEM and FASTEM2. Met Office NWP SAF Rep. NWPSAF-MO-VS-001, 33 pp.

  • Diak, G. R., D. Kim, M. S. Whipple, and X. Wu. 1992. Preparing for the AMSU. Bull. Amer. Meteor. Soc. 73:19711984.

  • English, S. J. 1999. Estimation of temperature and humidity profile information from microwave radiances over different surface types. J. Appl. Meteor. 38:15261541.

    • Search Google Scholar
    • Export Citation
  • English, S. J. and T. Hewison. 1998. A fast generic millimeter-wave emissivity model. Microwave Remote Sensing of the Atmosphere and Environment, T. Hayasaka et al., Eds., International Society for Optical Engineering (SPIE Vol. 3503), 288–300.

    • Search Google Scholar
    • Export Citation
  • English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre. 2000. A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc. 126:29112931.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R. 1991. A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 176, 28 pp.

  • Felde, G. W. and J. D. Pickle. 1995. Retrieval of 91 and 150 GHz Earth surface emissivities. J. Geophys. Res. 100:2085520866.

  • Ferrazoli, P., J-P. Wigneron, L. Guerriero, and A. Chanzi. 2000. Multifrequency emission of wheat: Modeling and applications. IEEE Trans. Geosci. Remote Sens. 38:25982607.

    • Search Google Scholar
    • Export Citation
  • Fily, M., A. Royer, K. Goita, and C. Prigent. 2003. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sens. Environ. 85:328338.

    • Search Google Scholar
    • Export Citation
  • Fung, A. K. 1994. Microwave Scattering and Emission Models and Their Applications. Artech House, 573 pp.

  • Grody, N. C. 1988. Surface identification using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens. 26:850859.

  • Hewison, T. J. 2001. Airborne measurements of forest and agricultural land surface emissivity at millimeter wavelengths. IEEE Trans. Geosci. Remote Sens. 39:393400.

    • Search Google Scholar
    • Export Citation
  • Hewison, T. J. and S. J. English. 1999. Airborne retrievals of snow and ice surface emissivity at millimeter wavelength. IEEE Trans. Geosci. Remote Sens. 37:18711879.

    • Search Google Scholar
    • Export Citation
  • Isaacs, R. G., Y-Q. Jin, R. D. Worsham, G. Deblonde, and V. J. Falcone. 1989. The RADTRAN microwave surface emission models. IEEE Trans. Geosci. Remote Sens. 27:433440.

    • Search Google Scholar
    • Export Citation
  • Jones, A. S. and T. H. Vonder Haar. 1997. Retrieval of surface emittance over land using coincident microwave and infrared satellite measurements. J. Geophys. Res. 102:1360913626.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. Coauthors 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 77:437471.

  • Karam, M. A., A. K. Fung, R. H. Lang, and N. S. Chuahan. 1992. A microwave scattering model for layered vegetation. IEEE Trans. Geosci. Remote Sens. 30:767784.

    • Search Google Scholar
    • Export Citation
  • Kelly, G. and P. Bauer. 2000. The use of AMSU-A surface channels to obtain surface emissivity over land, snow and ice for Numerical Weather Prediction. Proc. 11th Int. TOVS Study Conf., Budapest, Hungary, 167–179.

  • Matthews, E. 1983. Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor. 22:474486.

    • Search Google Scholar
    • Export Citation
  • Matzler, C. 1990. Seasonal evolution of microwave radiation from an oat field. Remote Sens. Environ. 31:161173.

  • Matzler, C. 1994. Passive microwave signatures of landscapes in winter. Meteor. Atmos. Phys. 54:241260.

  • Prigent, C., W. B. Rossow, and E. Matthews. 1997. Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res. 102:2186721890.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., W. B. Rossow, and E. Matthews. 1998. Global maps of microwave land surface emissivities: Potential for land surface characterization. Radio Sci. 33:745751.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., W. B. Rossow, and E. Matthews. 1999. Microwave radiometric signatures over different surface types in deserts. J. Geophys. Res. 104:1214712158.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., J. P. Wigneron, W. B. Rossow, and J. R. Pardo-Carrion. 2000. Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities? IEEE Trans. Geosci. Remote Sens. 38:23732386.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, W. B. Rossow, and E. Matthews. 2001a. Joint characterization of vegetation by satellite observations from visible to microwave wavelength: A sensitivity analysis. J. Geophys. Res. 106:2066520685.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., E. Matthews, F. Aires, and W. B. Rossow. 2001b. Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys. Res. Lett. 28:46314634.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. B. Rossow. 2003. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures. J. Geophys. Res. 108.4310, doi:10.1029/2002JD002301.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B. and R. A. Schiffer. 1999. Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc. 80:22612287.

  • Saunders, R. W. 1993. Note on the Advanced Microwave Sounding Unit. Bull. Amer. Meteor. Soc. 74:22112212.

  • Saunders, R., M. Matricardi, and P. Brunel. 1999. An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc. 125:14071425.

    • Search Google Scholar
    • Export Citation
  • Shi, J., K. S. Chen, Q. Li, T. J. Jackson, and P. E. O’Neil. 2002. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer. IEEE Trans. Geosci. Remote Sens. 40:26742686.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F. and P. Viterbo. 2003. A comparison between observations and the ECMWF model. J. Appl. Meteor. 42:14631479.

  • Weng, F., B. Yan, and N. C. Grody. 2001. A microwave land emissivity model. J. Geophys. Res. 106:2011520123.

  • Wigneron, J-P., D. Guyon, J-C. Calvet, G. Courrier, and N. Bruguier. 1997. Monitoring coniferous forest characteristics using a multifrequency (5–90 GHz) microwave radiometer. Remote Sens. Environ. 60:299310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 81 22
PDF Downloads 193 70 14