• Atlas, D. and C. R. Williams. 2003. Radar echoes from lightning and their microphysical environment. Geophys. Res. Lett. 30.1262, doi:10.1029/2002GL016521.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades. 2005. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res. 110.D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Drummond, F. J., R. R. Rogers, S. A. Cohn, W. L. Ecklund, D. A. Carter, and J. S. Wilson. 1996. A new look at the melting layer. J. Atmos. Sci. 53:759769.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. 2003. Improved precipitation rates and data quality by using polarimetric measurements. Weather Radar, P. Meischner, Ed., Springer Verlag, 130–166.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D. 2003. Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag. 52:2331.

  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz. 1998. The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol. 15:871886.

    • Search Google Scholar
    • Export Citation
  • Larsen, M. F. and J. Röttger. 1987. Observations of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF. J. Atmos. Oceanic Technol. 4:151159.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, and P. E. Johnston. 2001. A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor. 40:17021717.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas. 2002. Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea breeze thunderstorms. Mon. Wea. Rev. 130:22282239.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, and R. A. Vincent. 1994. Retrievals of ice particle size distributions from VHF wind profiler Doppler spectra. J. Atmos. Oceanic Technol. 11:15591568.

    • Search Google Scholar
    • Export Citation
  • Schuur, T., A. Ryzhkov, P. Heinselman, D. Zrnic, D. Burgess, and K. Scharfenberg. 2003. Observations and classification of echoes with the polarimetric WSR-88D radar. NSSL Rep., 46 pp.

  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland. 1993. Cumulus mergers in the maritime continent region. Meteor. Atmos. Phys. 51:7399.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M. 1996. Hydrometeor fields in a supercell storm as deduced from dual-polarization radar. Preprints, 18th Severe Local Storms Conf., San Francisco, CA, Amer. Meteor. Soc., 551–554.

  • Straka, J. M., D. Zrnic, and A. Ryzhkov. 2000. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor. 39:13411372.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka. 1999. Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc. 80:381388.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato. 1986. A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol. 3:623629.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R. 1989. The tripole structure of thunderstorms. J. Geophys. Res. 94:1315113167.

  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach. 1992. A radar and electrical study of tropical “hot towers.”. J. Atmos. Sci. 49:13861396.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W. and D. Reum. 1988. The flare echo: Reflectivity and velocity signature. J. Atmos. Oceanic Technol. 5:197205.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 24 0
PDF Downloads 27 16 0

Evaluation of Microphysical Retrievals from Polarimetric Radar with Wind Profiler Data

View More View Less
  • 1 Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia
Restricted access

Abstract

Polarimetric radar data have been used to produce microphysical classifications. This kind of analysis is run in a real-time mode from several research radars, including the C-band polarimetric (C-Pol) radar in Darwin, Australia. However, these classifications have had very little systematic evaluation with independent data. Using surface data is often difficult because of sampling issues, particularly for hail. The approach taken here is to use a combination of 50- and 920-MHz wind profiler estimates of rain and hail to provide validation data for the radar pixels over the profiler. The profilers also observe signals associated with lightning, and some comparisons are made between lightning occurrence and the radar measurements of graupel. The retrievals of hail–rain mixtures are remarkably robust; there are some issues regarding other microphysical classes, however, including difficulties in detecting melting snow layers in stratiform rain. These difficulties are largely due to the resampling of the radar volume data onto a grid and to poor separation of the snow classes.

Corresponding author address: Dr. P. T. May, BMRC, GPO Box 1289K, Melbourne, 3001, Victoria, Australia. p.may@bom.gov.au

Abstract

Polarimetric radar data have been used to produce microphysical classifications. This kind of analysis is run in a real-time mode from several research radars, including the C-band polarimetric (C-Pol) radar in Darwin, Australia. However, these classifications have had very little systematic evaluation with independent data. Using surface data is often difficult because of sampling issues, particularly for hail. The approach taken here is to use a combination of 50- and 920-MHz wind profiler estimates of rain and hail to provide validation data for the radar pixels over the profiler. The profilers also observe signals associated with lightning, and some comparisons are made between lightning occurrence and the radar measurements of graupel. The retrievals of hail–rain mixtures are remarkably robust; there are some issues regarding other microphysical classes, however, including difficulties in detecting melting snow layers in stratiform rain. These difficulties are largely due to the resampling of the radar volume data onto a grid and to poor separation of the snow classes.

Corresponding author address: Dr. P. T. May, BMRC, GPO Box 1289K, Melbourne, 3001, Victoria, Australia. p.may@bom.gov.au

Save