• Allaart, M., M. van Weele, P. Fortuin, and H. Kelder. 2004. An empirical model to predict the UV-index based on the solar zenith angles and total ozone. Meteor. Appl. 11:5965.

    • Search Google Scholar
    • Export Citation
  • Ångström, A. 1961. Techniques of determining the turbidity of the atmosphere. Tellus 13:214223.

  • Badosa, J. 2002. Mesures d’irradiancia eritematica a Catalunya vs. modelitzacions per cels serens a partir de la columna d’ozo d’EP/TOMS (Erythemal irradiance measurements in Catalonia vs. modelling for clear skies using the ozone column from EP/TOMS). Minor thesis, Dept. of Physics, University of Girona, 90 pp.

  • Badosa, J. and M. van Weele. 2002. Effects of aerosols on UV-index. KNMI Scientific Rep. WR-2002-07.

  • Bais, A. F. Coauthors 2001. SUSPEN intercomparison of ultraviolet spectroradiometers. J. Geophys. Res. 106:1250912526.

  • Blumthaler, M., W. Ambach, and R. Ellinger. 1997. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. Ser. B 39:130134.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E. and R. L. McKenzie. 1996. An algorithm for inferring surface UV irradiance including cloud effects. J. Appl. Meteor. 35:18601877.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., J. C. Scott, K. Kreher, and R. L. McKenzie. 2001. Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978–1998. J. Geophys. Res. 106:2302923042.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., P. Koepke, and E. P. Shettle. 1991. Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Elterman, L. 1968. UV, visible, and IR attenuation for altitudes to 50 km. Air Force Cambridge Research Laboratory Environmental Research Paper 285, AFCRL-68-0153, 49 pp.

  • Fioletov, V. E., J. B. Kerr, L. J. B. McArthur, D. I. Wardle, and T W. Mathews. 2003. Estimating UV index climatology over Canada. J. Appl. Meteor. 42:417433.

    • Search Google Scholar
    • Export Citation
  • González, J-A., J. Mejías, and J. Calbó. 2001. Aplicación de métodos basados en medidas radiativas de banda ancha a la determinación de la turbidez atmosférica en Girona (Application of methods based on broadband radiative measurements and the atmospheric turbidity determination in Girona). El tiempo del clima (Weather and Climate), A. J. Pérez-Cueva et al., Eds., Publicaciones de la Asociación Española de Climatología, 467–475.

  • Gueymard, C. A. 1998. Turbidity determination from broadband irradiance measurements: A detailed multicoefficient approach. J. Appl. Meteor. 37:414435.

    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A. and F. Vignola. 1998. Determination of atmospheric turbidity from the diffuse-beam broadband irradiance ratio. Sol. Energy 63:135146.

    • Search Google Scholar
    • Export Citation
  • Herman, J. R., R. L. McKenzie, S. B. Diaz, J. B. Kerr, S. Madronich, and G. Seckmeyer. 1999. Ultraviolet radiation at the Earth’s surface. UNEP/WMO Scientific Assessment of the Ozone Layer: 1998, D. L. Albritton et al., Eds., Global Ozone Research and Monitoring Project Rep. 44, 9.1–9.46.

  • Iqbal, M. 1983. An Introduction to Solar Radiation. Academic, 390 pp.

  • Jacobson, M. Z. 1998. Isolating the causes and effects of large ultraviolet reductions in Los Angeles. J. Aerosol Sci. 29:(Suppl.),. S655S656.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z. 1999. Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res. 104:35273542.

    • Search Google Scholar
    • Export Citation
  • Lenoble, J. 1993. Atmospheric Radiative Transfer. A. Deepak Publishing, 532 pp.

  • Leszczynski, K., K. Jokela, L. Ylianttila, R. Visuri, and M. Blumthaler. 1998. Erythemally weighted radiometers in solar UV monitoring: Results from the WMO/STUK intercomparison. Photochem. Photobiol. 67:212221.

    • Search Google Scholar
    • Export Citation
  • Liley, J. B. and R. L. McKenzie. 2002. Air clarity implications for solar radiation at the surface. Proc. 16th Int. Clean Air and Environment Conf., Christchurch, New Zealand, CASANZ, 502–505.

  • Lorente, J. 1978. Contribución al estudio de la turbiedad atmosférica en Barcelona (Contribution to the study of atmospheric turbidity in Barcelona). Rev. Geofis. 2:155167.

    • Search Google Scholar
    • Export Citation
  • Madronich, S. 1993. UV radiation in the natural and perturbed atmosphere. Environmental Effects of UV (Ultraviolet) Radiation, M. Tevini, Ed., Lewis Publisher, 17–69.

    • Search Google Scholar
    • Export Citation
  • Madronich, S., R. L. McKenzie, M. M. Caldwell, and L. O. Björn. 1994. Changes in ultraviolet radiation reaching the earth’s surface. Environmental Effects of Ozone Depletion: 1994 Assessment, United Nations Environment Programme, 1–22.

  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J S. Garing. 1972. Optical properties of the atmosphere. 3d ed. AFCRL Environmental Research Paper 411, 108 pp.

  • McKenzie, R. L., P. V. Johnston, M. Kotkamp, A. Bittar, and J. D. Hamlin. 1992. Solar ultraviolet spectroradiometry in New Zealand: Instrumentation and sample results from 1990. Appl. Opt. 31:65016509.

    • Search Google Scholar
    • Export Citation
  • McKenzie, R. L., P. V. Johnston, and G. Seckmeyer. 1997. UV spectro-radiometry in the network for the detection of stratospheric change (NDSC). Solar Ultraviolet Radiation: Modelling, Measurements, and Effects, C. S. Zerefos and A. F. Bais, Eds., NATO ASI Series, Vol. 1.52, Springer-Verlag, 279–287.

  • McKenzie, R. L., K. J. Paulin, and S. Madronich. 1998. Effects of snow cover on UV radiation and surface albedo: A case study. J. Geophys. Res. 103:2878528792.

    • Search Google Scholar
    • Export Citation
  • McKenzie, R. L., P. V. Johnston, D. Smale, B. Bodhaine, and S. Madronich. 2001a. Altitude effects on UV spectral irradiance deduced from measurements at Lauder, New Zealand and at Mauna Loa Observatory, Hawaii. J. Geophys. Res. 106:2284522860.

    • Search Google Scholar
    • Export Citation
  • McKenzie, R. L., G. Seckmeyer, A. Bais, and S. Madronich. 2001b. Satellite retrievals of erythemal UV dose compared with ground-based measurements at northern and southern mid-latitudes. J. Geophys. Res. 106:2405124062.

    • Search Google Scholar
    • Export Citation
  • McKinlay, A. F. and B. L. Diffey. 1987. A reference action spectrum for ultraviolet induced erythema in human skin. Human Exposure to Ultraviolet Radiation: Risks and Regulations, W. R. Passchier and B. M. F. Bosnajakovich, Eds., Elsevier, 83–87.

    • Search Google Scholar
    • Export Citation
  • Pedrós, R., M. P. Utrillas, J. A. Martínez-Lozano, and F. Tena. 1999. Values of broad band turbidity coefficients in a Mediterranean coastal site. Sol. Light 66:1120.

    • Search Google Scholar
    • Export Citation
  • Petters, J. L., V. K. Saxena, J. R. Slusser, B. N. Wenny, and S. Madronich. 2003. Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model. J. Geophys. Res. 108.4288, doi:10.1029/2002JD002360.

    • Search Google Scholar
    • Export Citation
  • Pinazo, J. M., J. Cañada, and J. V. Boscá. 1995. A new method determine Ångstrom’s turbidity coefficient: Its application for Valencia. Sol. Energy 54:219226.

    • Search Google Scholar
    • Export Citation
  • Radiation Commission of IAMAP 1986. A preliminary cloudless standard atmosphere for radiation computation. Rep. WCP-112, WMO/TD 24, 53 pp.

  • Renaud, A., J. Staehelin, C. Fröhlich, R. Philipona, and A. Heimo. 2000. Influence of snow and clouds on erythemal UV radiation: Analysis of Swiss measurements and comparison with models. J. Geophys. Res. 105:49614969.

    • Search Google Scholar
    • Export Citation
  • Reuder, J. and H. Schwander. 1999. Aerosol effects on UV radiation in nonurban regions. J. Geophys. Res. 104:40654077.

  • Schmalwieser, A. W. and G. Schauberger. 2001. A monitoring network for erythemally-effective solar ultraviolet radiation in Austria: Determination of the measuring sites and visualisation of the spatial distribution. Theor. Appl. Climatol. 69:221229.

    • Search Google Scholar
    • Export Citation
  • Schmalwieser, A. W. Coauthors 2002. Worldwide forecast of the biologically effective UV radiation: UV index and daily dose. Ultraviolet Groundand Space-based Measurements, Models, and Effects. J. R. Slusser, J. R. Herman, and W. Gao, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4482), 259–264.

  • Schmucki, D. and R. Philipona. 2001. UV radiation in the Alps: Altitude effect. Extended Abstracts, EGS XXVI General Assembly, Nice, France, European Geophysical Society, Vol. 3, CD-ROM.

  • Vanicek, K., T. Frei, Z. Litynska, and A. Schmalwieser. 2000. UV index for the public. Working Group 4 of the COST-713 Action “UVB Forecasting.” [Available online at http://www.lamma.rete.toscana.it/uvweb/.].

  • Verdebout, J. 2000. A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary data. J. Geophys. Res. 105:50495058.

    • Search Google Scholar
    • Export Citation
  • Weihs, P. Coauthors 2002. Effective surface albedo due to snow cover of the surrounding area. Ultraviolet Ground- and Space-based Measurements, Models, and Effects. J. R. Slusser, J. R. Herman, and W. Gao, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4482), 152–159.

  • Zaratti, F., R. N. Forno, J. Garcia Fuentes, and M. F. Andrade. 2003. Erythemally weighted UV variations at two high-altitude locations. J. Geophys. Res. 108:42634268.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 2 2 2

Using a Parameterization of a Radiative Transfer Model to Build High-Resolution Maps of Typical Clear-Sky UV Index in Catalonia, Spain

View More View Less
  • a Departament de Física, Grup de Física Ambiental, Universitat de Girona, Girona, Spain
  • | b Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
  • | c National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
Restricted access

Abstract

To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within ±0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.

Corresponding author address: Jordi Badosa, Grup de Física Ambiental, Departament de Física, Universitat de Girona, Escola Politècnica Superior, Campus Montilivi, EPS II, 17071 Girona, Spain. jordi.badosa@udg.es

Abstract

To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within ±0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.

Corresponding author address: Jordi Badosa, Grup de Física Ambiental, Departament de Física, Universitat de Girona, Escola Politècnica Superior, Campus Montilivi, EPS II, 17071 Girona, Spain. jordi.badosa@udg.es

Save