The Successive-Order-of-Interaction Radiative Transfer Model. Part II: Model Performance and Applications

Christopher W. O’Dell Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Christopher W. O’Dell in
Current site
Google Scholar
PubMed
Close
,
Andrew K. Heidinger Advanced Satellite Products Branch, NOAA/NESDIS Office of Research and Applications, Madison, Wisconsin

Search for other papers by Andrew K. Heidinger in
Current site
Google Scholar
PubMed
Close
,
Thomas Greenwald Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Thomas Greenwald in
Current site
Google Scholar
PubMed
Close
,
Peter Bauer European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Bauer in
Current site
Google Scholar
PubMed
Close
, and
Ralf Bennartz Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Ralf Bennartz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radiative transfer models for scattering atmospheres that are accurate yet computationally efficient are required for many applications, such as data assimilation in numerical weather prediction. The successive-order-of-interaction (SOI) model is shown to satisfy these demands under a wide range of conditions. In particular, the model has an accuracy typically much better than 1 K for most microwave and submillimeter cases in precipitating atmospheres. Its speed is found to be comparable to or faster than the commonly used though less accurate Eddington model. An adjoint has been written for the model, and so Jacobian sensitivities can be quickly calculated. In addition to a conventional error assessment, the correlation between errors in different microwave channels is also characterized. These factors combine to make the SOI model an appealing candidate for many demanding applications, including data assimilation and optimal estimation, from microwave to thermal infrared wavelengths.

Corresponding author address: Christopher W. O’Dell, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: odell@aos.wisc.edu

Abstract

Radiative transfer models for scattering atmospheres that are accurate yet computationally efficient are required for many applications, such as data assimilation in numerical weather prediction. The successive-order-of-interaction (SOI) model is shown to satisfy these demands under a wide range of conditions. In particular, the model has an accuracy typically much better than 1 K for most microwave and submillimeter cases in precipitating atmospheres. Its speed is found to be comparable to or faster than the commonly used though less accurate Eddington model. An adjoint has been written for the model, and so Jacobian sensitivities can be quickly calculated. In addition to a conventional error assessment, the correlation between errors in different microwave channels is also characterized. These factors combine to make the SOI model an appealing candidate for many demanding applications, including data assimilation and optimal estimation, from microwave to thermal infrared wavelengths.

Corresponding author address: Christopher W. O’Dell, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: odell@aos.wisc.edu

Save
  • Bauer, P., and P. Schluessel, 1993: Rainfall, total water, ice water and water-vapor over sea from polarized microwave simulations. J. Geophys. Res., 98 , 27572765.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., L. Schanz, and L. Roberti, 1998: Correction of three-dimensional effects for passive microwave retrievals of convective precipitation. J. Appl. Meteor., 37 , 16191632.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, A. Benedetti, E. Moreau, D. Salmond, and M. Bonazzola, 2004: Assimilation of satellite-derived precipitation information at ECMWF in preparation of a future European contribution to GPM (EGPM). ECWMF Internal Rep. 17193, 85 pp.

  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau, 2006a: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. Part, I, 1D-Var. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, S. Saarinen, and M. Bonazzola, 2006b: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. Part II: 4D-Var. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., E. Moreau, F. Chevallier, and U. O’Keefe, 2006c: Multiple-scattering microwave radiative transfer for data assimilation applications. Quart. J. Roy. Meteor. Soc., 132 , 12591281.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. P. Petty, 2001: The sensitivity of passive microwave radiances in precipitating clouds to ice particle size distributions. J. Appl. Meteor., 40 , 345364.

    • Search Google Scholar
    • Export Citation
  • Deblonde, G., and S. J. English, 2001: Evaluation of the FASTEM-2 fast microwave oceanic surface emissivity model. Tech. Proc. ITSC-XI, Budapest, Hungary, WMO and Cosponsors, 67–78.

  • English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, F. W. Saunders, and J. Eyre, 2000: A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126 , 29112931.

    • Search Google Scholar
    • Export Citation
  • Errico, R., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78 , 25772591.

  • Evans, K. F., and G. L. Stephens, 1990: Polarized microwave radiative transfer modeling: An application to microwave remote sensing of precipitation. Department of Atmospheric Sciences, Colorado State University, Paper 461, 79 pp.

  • Evans, K. F., J. Turk, T. Wong, and G. L. Stephens, 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34 , 260279.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., S. J. Walter, A. J. Heymsfield, and G. M. McFarquhar, 2002: Submillimeter-wave cloud ice radiometer: Simulations of retrieval algorithm performance. J. Geophys. Res., 107 .4028, doi:10.1029/2001JD000709.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24 , 437474.

  • Greenwald, T. J., R. Hertenstein, and T. Vukicevic, 2002: An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon. Wea. Rev., 130 , 18821897.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T., R. Bennartz, C. W. O’Dell, and A. Heidinger, 2005: Fast computation of microwave radiances for data assimilation using the successive order of scattering approximation. J. Appl. Meteor., 44 , 960966.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A., C. W. O’Dell, T. Greenwald, and R. Bennartz, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45 , 13881402.

    • Search Google Scholar
    • Export Citation
  • Henyey, L. C., and J. L. Greenstein, 1941: Diffuse radiation in the galaxy. Astrophys. J., 93 , 7083.

  • Hollinger, J. P., J. L. Pierce, and G. A. Poe, 1987: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28 , 781790.

  • Irvine, W. M., 1965: Multiple scattering by large particles. Astrophys. J., 142 , 15631575.

  • Kim, M. J., G. Skofronick-Jackson, and J. A. Weinman, 2004: Intercomparison of millimeter-wave radiation transfer models. IEEE Trans. Geosci. Remote Sens., 42 , 18821890.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12 , 659675.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., C. Simmer, and E. Ruprecht, 1996: Three-dimensional radiative transfer effects of clouds in the microwave spectral range. J. Geophys. Res., 101 , 42894298.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., K. N. Liou, Y. Takano, E. Wong, K. D. Hutchison, and T. K. Samec, 2004: Comparison of the UCLA-LBLE radiative transfer model and MODTRAN for accuracy assessment of the NPOESS-VIIRS cloud optical property algorithms. Weather and Environmental Satellites, T. H. Vonder Haar and H.-L. A. Huang, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 5549), 80–89.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54 , 89100.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and K. B. Katsaros, 1994: The response of the SSM/I to the marine environment. Part II: A parameterization of the effect of the sea surface slope distribution on emission and reflection. J. Atmos. Oceanic Technol., 11 , 617628.

    • Search Google Scholar
    • Export Citation
  • Roberti, L., J. Haferman, and C. D. Kummerow, 1994: Microwave radiative transfer through horizontally inhomogeneous precipitating clouds. J. Geophys. Res., 99 , 1670716718.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding. World Scientific, 256 pp.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33 , 919928.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M-J. Kim, J. A. Weinman, and D-E. Chang, 2004: A physical model to determine snowfall over land by microwave radiometry. IEEE Trans. Geosci. Remote Sens., 42 , 10471058.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., P. Bauer, F. S. Marzano, C. D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi, 2002: Intercomparison of microwave radiative transfer models for precipitating clouds. IEEE Trans. Geosci. Remote Sens., 40 , 541549.

    • Search Google Scholar
    • Export Citation
  • Thepaut, J. N., and P. Moll, 1990: Variational inversion of simulated TOVS radiances using the adjoint technique. Quart. J. Roy. Meteor. Soc., 116 , 14251448.

    • Search Google Scholar
    • Export Citation
  • Voronovich, A. G., A. J. Gasiewski, and B. L. Weber, 2004: A fast multistream scattering-based Jacobian for microwave radiance assimilation. IEEE Trans. Geosci. Remote Sens., 42 , 17491761.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 124 42 4
PDF Downloads 120 30 3