• Anderson, G. P., and Coauthors, 1995: FASCODE/MODTRAN/LOWTRAN: Past/present/future. In Proceedings of the 18th Annual Review Conference on Atmospheric Transmission Models. Rep. A179703, Phillips Laboratory, Hanscom AFB, Bedford, MA.

  • Bréon, F-M., , D. L. Jackson, , and J. J. Bates, 2000: Calibration of the Meteosat water vapor channel using collocated NOAA/HIRS 12 measurements. J. Geophys. Res, 105 , 1192511933.

    • Search Google Scholar
    • Export Citation
  • Bronstein, I. N., , and K. A. Semendjajew, 1959: Taschenbuch der Mathematik. (Handbook of Mathematics). 2d ed. B. G. Teubner Verlagsgesellschaft, 584 pp.

    • Search Google Scholar
    • Export Citation
  • Büche, G., , A. Kummer, , A. Ottenbacher, , and H. Fischer, 1991: Displacement vectors from METEOSAT WV images using a new extraction technique. Proc. Workshop on Wind Extraction from Operational Meteorological Satellite Data, Vol. EUM P10, Washington, DC, EUMETSAT, 91–96.

  • Büche, G., , A. Kummer, , and H. Fischer, 1994: Bestimmung von Windvektoren aus METEOSAT-Wasserdampf-Bildern der Erdatmosphäre (Evaluation of wind vectors from METEOSAT water vapor images of the earth's atmosphere). Kernforschungszentrum Karlsruhe. KFK-Nachr, 26 , 6775.

    • Search Google Scholar
    • Export Citation
  • Büche, G., , H. Karbstein, , and H. Fischer, 1998: Interpretation of structure displacements within cloud-free water vapour scenes of METEOSAT. Proc. Fourth Int. Winds Workshop, Vol. EUM P24, Saanenmöser, Switzerland, EUMETSAT, 163–170.

  • Eigenwillig, N., , and H. Fischer, 1982: Determination of midtropospheric wind vectors by tracking pure water vapor structures in METEOSAT water vapor image sequences. Bull. Amer. Meteor. Soc, 63 , 4458.

    • Search Google Scholar
    • Export Citation
  • Fischer, H., , N. Eigenwillig, , and H. Müller, 1981: Information content of METEOSAT and Nimbus/THIR water vapor channel data: Altitude association of observed phenomena. J. Appl. Meteor, 20 , 13441352.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., , and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor, 34 , 315.

    • Search Google Scholar
    • Export Citation
  • Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Holmlund, K., 2002: Current status of the EUMETSAT operational and future AMV extraction facilities. Proc. Sixth Int. Winds Workshop, Vol. EUM P35, Madison, WI, EUMETSAT, 45–52. [Available online at http://www.eumetsat.de/en/area2/proceedings/eump35/index.html.].

  • Holmlund, K., , and C. Velden, 1998: Objective determination of the reliability of satellite-derived atmospheric motion vectors. Proc. Fourth Int. Winds Workshop, Vol. EUM P24, Saanenmöser, Switzerland, EUMETSAT, 215–244.

  • Jedlovec, G. J., , J. A. Lerner, , and R. J. Atkinson, 2000: A satellite-derived upper-tropospheric water vapor transport index for climate studies. J. Appl. Meteor, 39 , 1541.

    • Search Google Scholar
    • Export Citation
  • Karbstein, H., 1999: Die Höhenzuordnung von wolkenfreien Wasserdampfstrukturen für die Windanalyse in METEOSAT-Bildern (The height assignment of cloud-free water vapour structures for the wind analysis in METEOSAT images). Ph.D. dissertation, Fakultät für Physik der Universität (TH) Karlsruhe, Forschungszentrum Karlsruhe, Wissenschaftlicher Bericht FZKA 6367, VIII + 151 pp.

  • Kästner, M., , H. Fischer, , and H. J. Bolle, 1980: Wind determination from Nimbus-5 observations in the 6.3μm water vapor band. J. Appl. Meteor, 19 , 409418.

    • Search Google Scholar
    • Export Citation
  • Köpken, Ch, , J-N. Thépaut, , G. Kelly, , and A. P. McNally, 2001: Satellite data assimilation for numerical weather prediction. Proc. 2001 EUMETSAT Meteorological Satellite Data Users' Conf., Vol. EUM P33, Antalya, Turkey, EUMETSAT, 581–590. [Available online at http://www.eumetsat.int.].

  • Kummer, A., 1993: Über die Anwendung von Filtern bei der Bestimmung von Verschiebungsvektoren aus METEOSAT-Wasserdampf-Bildern (On the application of filters in determination of displacement vectors for water vapor structures in METEOSAT images). Diplomarbeit, Institut für Meteorologie und Klimaforschung, Universität (TH) Karlsruhe, KfK-Bericht Nr. 5216, 59 pp.

  • Laurent, H., 1993: Wind extraction from METEOSAT water vapor channel image data. J. Appl. Meteor, 32 , 11241133.

  • Leese, J. A., , Ch S. Novak, , and B. B. Clark, 1971: An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation. J. Appl. Meteor, 10 , 118132.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., , N. Pescod, , R. Seecamp, , C. Spinoso, , and A. Rea, 1998: Improved weather forecasts from the continuous generation and assimilation of high spatial and temporal resolution winds. Proc. Fourth Int. Winds Workshop, Vol. EUM P24, Saanenmöser, Switzerland, EUMETSAT, 101–108.

  • Menzel, W. P., 2001: Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc, 82 , 3347.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc, 75 , 757781.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , F. C. Holt, , T. J. Schmit, , R. M. Aune, , A. J. Schreiner, , G. S. Wade, , and D. G. Gray, 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc, 79 , 20592077.

    • Search Google Scholar
    • Export Citation
  • Möller, F., 1961: Atmospheric water vapour measurements at 6-7 microns from a satellite. Planet. Space Sci, 5 , 202206.

  • Nieman, S. J., , W. P. Menzel, , C. M. Hayden, , D. Gray, , S. T. Wanzong, , C. S. Velden, , and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc, 78 , 11211133.

    • Search Google Scholar
    • Export Citation
  • Poc, M., , M. Roulleau, , N. A. Scott, , and A. Chedin, 1980: Quantitative studies of METEOSAT water vapor channel data. J. Appl. Meteor, 19 , 868876.

    • Search Google Scholar
    • Export Citation
  • Rao, P. A., , Ch S. Velden, , and S. A. Braun, 2002: The vertical error characteristics of GOES-derived winds: Description and experiments with numerical weather prediction. J. Appl. Meteor, 41 , 253271.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., , and M. Nuret, 1987: Automatic tracking of high-level clouds in Meteosat infrared images with a radiance windowing technique. ESA J, 11 , 275286.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., , K. Holmlund, , J. Hofmann, , B. Strauss, , B. Mason, , V. Gaertner, , A. Koch, , and L. van de Berg, 1993: Operational cloud motion winds from Meteosat infrared images. J. Appl. Meteor, 32 , 12061225.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1998: Tracking upper tropospheric water vapor radiances: A satellite perspective. J. Geophys. Res, 103 , 1706917081.

  • Szantai, A., , M. Desbois, , L. Picon, , H. Laurent, , and F. Desalmand, 1996: Construction of cloud trajectories and motion of cirrus clouds and water vapour structures. Proc. Third Int. Winds Workshop, Vol. EUM P18, Ascona, Switzerland, EUMETSAT, 221–230.

  • Tokuno, M., 1996: Operational system for extracting cloud motion and water vapour motion winds from GMS-5 image data. Proc. Third Int. Winds Workshop, Vol. EUM P18, Ascona, Switzerland, EUMETSAT, 21–30.

  • Tokuno, M., 1998: Improvements in the method to extract operational cloud motion winds and water vapour motion winds of the GMS-5 system. Proc. Fourth Int. Winds Workshop, Vol. EUM P 24, Saanenmöser, Switzerland, EUMETSAT, 61–68.

  • Tokuno, M., , R. Kumabe, , and Y. Kajino, 2002: Recent advances to experimental GMS atmospheric motion vector processing system at MSC/JMA. Proc. Sixth Int. Winds Workshop, Vol. EUM P35, Madison, WI, EUMETSAT, 25–32. [Available online at http://www.eumetsat.de/en/area2/proceedings/eump35/index.html.].

  • van de Berg, L. C. J., , J. Schmetz, , and J. Whitlock, 1995: On the calibration of the Meteosat water vapor channel. J. Geophys. Res, 100 , 2106921076.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., , C. M. Hayden, , S. J. Nieman, , W. P. Menzel, , and S. Wanzong, 1997: Upper tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc, 78 , 173195.

    • Search Google Scholar
    • Export Citation
  • Walter, W., 1970: Einführung in die Theorie der Distributionen. (Introduction into the Theory of Distributions). Bibliographisches Institut, VIII + 211 pp.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , Q. Zhang, , X. Fang, , and J. Liu, 1998: Cloud motion winds from FY-2 and GMS-5 meteorological satellites. Proc. Fourth Int. Winds Workshop, Vol. EUM P24, Saanenmöser, Switzerland, EUMETSAT, 41–48.

  • Xu, J., , K. Holmlund, , Q. Zhang, , and J. Schmetz, 2002: Comparison of two schemes for derivation of atmospheric motion vectors. J. Geophys. Res, 107 .4196, doi:10.1029/2001JD000744.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 6
PDF Downloads 20 20 4

Water Vapor Structure Displacements from Cloud-Free Meteosat Scenes and Their Interpretation for the Wind Field

View More View Less
  • 1 Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe/Universität Karlsruhe, Karlsruhe, Germany
© Get Permissions
Restricted access

Abstract

The evaluation of water vapor (WV) images taken by satellite-borne radiometers has become an essential source of data in modern meteorology. The analysis of structure displacements within sections of WV images is an effective way to get horizontal components of wind vectors. In contrast to intermediate-level and high-level clouds, the height assignment of displacement vectors connected with cloud-free WV structures needs additional information from atmospheric profiles. Nevertheless, interpreting these motion vectors as independent wind vectors and not simply matching them to any model wind field is tried. This contribution reports on the evaluation of structure displacements and how it can be done efficiently in the case of smooth and shallow scenes by the use of appropriate filters. Then, a series of height-assignment methods is tested for altitude-sensitive parameters such as wind shear and brightness contrast of pixels within segments used for structure tracking. The results are verified by comparison with reference wind data from the analysis of a weather prediction model as well as from radiosonde ascents. From a statistical point of view and for cases of strong wind shear it is clearly revealed that methods that use the effective brightness temperature, in particular from the coldest pixels, lead to better height assignment than do others that are based on the contribution function explicitly. From a series of individual cases it is found that the relative minimum of the difference between reference wind and clear-air structure displacement is not related uniquely to either the coldest (or warmest) pixel of the segment or the effective brightness temperature of pixels leading the tracking procedure. A cloud-free WV structure consequently contains information from an atmospheric layer whose displacement vector is a weighted sum over the motions within its specific thickness. Then the individual situation will determine whether a structure displacement reflects the motion at a well-defined height or whether it should be taken as a collective motion within an atmospheric layer that is an essential part of the upper troposphere.

* Current affiliation: Entory AG, Ettlingen, Germany

+ Current affiliation: Aksima, Munich, Germany

Corresponding author address: Dr. Gerhard Büche, Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Postfach 36 40, 76021 Karlsruhe, Germany. Email: gerhard.bueche@imk.fzk.de

Abstract

The evaluation of water vapor (WV) images taken by satellite-borne radiometers has become an essential source of data in modern meteorology. The analysis of structure displacements within sections of WV images is an effective way to get horizontal components of wind vectors. In contrast to intermediate-level and high-level clouds, the height assignment of displacement vectors connected with cloud-free WV structures needs additional information from atmospheric profiles. Nevertheless, interpreting these motion vectors as independent wind vectors and not simply matching them to any model wind field is tried. This contribution reports on the evaluation of structure displacements and how it can be done efficiently in the case of smooth and shallow scenes by the use of appropriate filters. Then, a series of height-assignment methods is tested for altitude-sensitive parameters such as wind shear and brightness contrast of pixels within segments used for structure tracking. The results are verified by comparison with reference wind data from the analysis of a weather prediction model as well as from radiosonde ascents. From a statistical point of view and for cases of strong wind shear it is clearly revealed that methods that use the effective brightness temperature, in particular from the coldest pixels, lead to better height assignment than do others that are based on the contribution function explicitly. From a series of individual cases it is found that the relative minimum of the difference between reference wind and clear-air structure displacement is not related uniquely to either the coldest (or warmest) pixel of the segment or the effective brightness temperature of pixels leading the tracking procedure. A cloud-free WV structure consequently contains information from an atmospheric layer whose displacement vector is a weighted sum over the motions within its specific thickness. Then the individual situation will determine whether a structure displacement reflects the motion at a well-defined height or whether it should be taken as a collective motion within an atmospheric layer that is an essential part of the upper troposphere.

* Current affiliation: Entory AG, Ettlingen, Germany

+ Current affiliation: Aksima, Munich, Germany

Corresponding author address: Dr. Gerhard Büche, Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Postfach 36 40, 76021 Karlsruhe, Germany. Email: gerhard.bueche@imk.fzk.de

Save