• Allwine, K. J., , X. Bian, , C. D. Whiteman, , and H. W. Thistle, 1997: VALDRIFT—A valley atmospheric dispersion model. J. Appl. Meteor, 36 , 10761087.

    • Search Google Scholar
    • Export Citation
  • Anquetin, S., , C. Guilbaud, , and J-P. Chollet, 1998: The formation and destruction of inversion layers within a deep valley. J. Appl. Meteor, 37 , 15471560.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., , and T. B. McKee, 1983: Dynamical model simulation of the morning boundary layer development in deep mountain valleys. J. Climate Appl. Meteor, 22 , 341351.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., , and T. B. McKee, 1985: Effect of shear, stability and valley characteristics on the destruction of temperature inversions. J. Climate Appl. Meteor, 24 , 822832.

    • Search Google Scholar
    • Export Citation
  • Colette, A., , F. K. Chow, , and R. L. Street, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor, 42 , 12551272.

    • Search Google Scholar
    • Export Citation
  • Kuwagata, T., , and F. Kimura, 1995: Daytime boundary layer evolution in a deep valley. Part I: Observations in the Ina Valley. J. Appl. Meteor, 34 , 10821091.

    • Search Google Scholar
    • Export Citation
  • Kuwagata, T., , and F. Kimura, 1997: Daytime boundary layer evolution in a deep valley. Part II: Numerical simulation of the cross-valley circulation. J. Appl. Meteor, 36 , 883895.

    • Search Google Scholar
    • Export Citation
  • Müller, H., , and C. D. Whiteman, 1988: Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. J. Appl. Meteor, 27 , 188194.

    • Search Google Scholar
    • Export Citation
  • Sakiyama, S. K., 1990: Drainage flow characteristics and inversion breakup in two Alberta Mountain valleys. J. Appl. Meteor, 29 , 10151030.

    • Search Google Scholar
    • Export Citation
  • Savov, P. B., , T. S. Skakalova, , I. N. Kolev, , and F. L. Ludwig, 2002: Lidar investigation of the temporal and spatial distribution of atmospheric aerosols in mountain valleys. J. Appl. Meteor, 41 , 528541.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area-height distribution of a valley and its relation to the valley wind. Beitr. Phys. Atmos, 57 , 6471.

  • Triantafyllou, A. G., , C. G. Helmis, , D. N. Asimakopoulos, , and A. T. Soilemes, 1995: Boundary layer evolution over a large and broad mountain basin. Theor. Appl. Climatol, 52 , 1925.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys. Part I: Observations. J. Appl. Meteor, 21 , 270289.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., , and T. B. McKee, 1982: Breakup of temperature inversions in deep mountain valleys. Part II: Thermodynamic model. J. Appl. Meteor, 21 , 290302.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , K. J. Allwine, , L. J. Fritschen, , M. M. Orgill, , and J. R. Simpson, 1989a: Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J. Appl. Meteor, 28 , 414426.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , K. J. Allwine, , L. J. Fritschen, , M. M. Orgill, , and J. R. Simpson, 1989b: Deep valley radiation and surface energy budget microclimates. Part II: Energy budget. J. Appl. Meteor, 28 , 427437.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , B. Pospichal, , S. Eisenbach, , R. Steinacker, , M. Dorninger, , E. Mursch-Radlgruber, , and C. B. Clements, 2003: Temperature inversion breakup in the Gstettneralm sinkhole. Proc. Int. Conf. on Alpine Meteorology and MAP Meeting 2003, Brig, Switzerland, MeteoSwiss, 263–266.

  • Whiteman, C. D., , B. Pospichal, , S. Eisenbach, , P. Weihs, , C. B. Clements, , R. Steinacker, , E. Mursch-Radlgruber, , and M. Dorninger, 2004: Inversion breakup in small Rocky Mountain and Alpine Basins. J. Appl. Meteor, 43 , 10691082.

    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M., , and G. A. Efstathiou, 2006: Parameterization of inversion breakup in idealized valleys. Part II: Thermodynamic model. J. Appl. Meteor. Climatol, 45 , 609623.

    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M., , A. G. Kelessis, , G. Kallos, , A. Triantafyllou, , B. Haralampidou, , Th I. Kozyraki, , F. K. Vosniakos, , and M. Manolopoulou, 1992: An analysis of the SO2, NO2 and particulates concentration levels under inversion break-up fumigations in the Ptolemais–Kozani Valley, Greece. Fresenius Environ. Bull, 1 , 700705.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 2
PDF Downloads 14 14 2

Parameterization of Inversion Breakup in Idealized Valleys. Part I: The Adjustable Model Parameters

View More View Less
  • 1 Technological Educational Institution of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
© Get Permissions
Restricted access

Abstract

The factors that affect the atmospheric energy budget approach used in the thermodynamic valley inversion destruction model of Whiteman and McKee are investigated theoretically. The height at which the sinking inversion top meets the rising convective boundary layer to destroy valley inversions can be uniquely determined by the topographic characteristics of the valley and an adjustable model parameter, relating to the fraction of sensible heat flux going to convective boundary layer growth, through a simple parabolic relationship. The time required to break a temperature inversion can be expressed with very good approximation as a simple power-law function of the topographic parameters and the fraction of extraterrestrial solar flux that is partitioned to sensible heat flux in the valley atmosphere. The theoretical estimates compare very favorably to predictions from the bulk thermodynamic model of Whiteman and McKee. A new approach to handle time-dependent sensible heat fluxes is outlined. The paper ends with recommendations for future research.

Corresponding author address: Dr. N. M. Zoumakis, Technological Educational Institution of Thessaloniki, Laboratory of Atmospheric Physics, P.O. Box 141, Sindos 57400, Thessaloniki, Greece. Email: envatm@gen.teithe.gr

Abstract

The factors that affect the atmospheric energy budget approach used in the thermodynamic valley inversion destruction model of Whiteman and McKee are investigated theoretically. The height at which the sinking inversion top meets the rising convective boundary layer to destroy valley inversions can be uniquely determined by the topographic characteristics of the valley and an adjustable model parameter, relating to the fraction of sensible heat flux going to convective boundary layer growth, through a simple parabolic relationship. The time required to break a temperature inversion can be expressed with very good approximation as a simple power-law function of the topographic parameters and the fraction of extraterrestrial solar flux that is partitioned to sensible heat flux in the valley atmosphere. The theoretical estimates compare very favorably to predictions from the bulk thermodynamic model of Whiteman and McKee. A new approach to handle time-dependent sensible heat fluxes is outlined. The paper ends with recommendations for future research.

Corresponding author address: Dr. N. M. Zoumakis, Technological Educational Institution of Thessaloniki, Laboratory of Atmospheric Physics, P.O. Box 141, Sindos 57400, Thessaloniki, Greece. Email: envatm@gen.teithe.gr

Save