• Allwine, K. J., , X. Bian, , C. D. Whiteman, , and H. W. Thistle, 1997: VALDRIFT—A valley atmospheric dispersion model. J. Appl. Meteor, 36 , 10761087.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., , and T. B. McKee, 1983: Dynamical model simulation of the morning boundary layer development in deep mountain valleys. J. Climate Appl. Meteor, 22 , 341351.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., , and T. B. McKee, 1985: Effect of shear, stability and valley characteristics on the destruction of temperature inversions. J. Climate Appl. Meteor, 24 , 822832.

    • Search Google Scholar
    • Export Citation
  • Bellasio, R., , G. Maffeis, , J. S. Scire, , M. G. Longoni, , R. Bianconi, , and N. Quaranta, 2005: Algorithms to account for topographic shading effects and surface temperature dependence on terrain elevation in diagnostic meteorological models. Bound.-Layer Meteor, 114 , 595614.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. H., 1982: Evaporation into the Atmosphere. Reidel, 299 pp.

  • Colette, A., , F. K. Chow, , and R. L. Street, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor, 42 , 12551272.

    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., , and A. A. M. Holtslag, 1982: A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. J. Appl. Meteor, 21 , 16101621.

    • Search Google Scholar
    • Export Citation
  • De Rooy, W. C., , and A. A. M. Holtslag, 1999: Estimation of surface radiation and energy flux densities from single-level weather data. J. Appl. Meteor, 38 , 526540.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., , and J. C. Chang, 1992: Boundary layer parameterizations for applied dispersion modelling over urban areas. Bound.-Layer Meteor, 58 , 229259.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., 1985: Temperature field and energy budget of a small alpine valley. Beitr. Phys. Atmos, 58 , 545559.

  • Hofierka, J., , and M. Suri, 2002: The solar radiation model for open source GIS implementation and applications. Proc. Open Source Free Software GIS–GRASS Users Conf. 2002, Trento, Italy, University of Trento, 1–19.

  • Holtslag, A. A. M., , and A. P. van Ulden, 1983: A simple scheme for daytime estimates of the surface fluxes from routine weather data. J. Climate Appl. Meteor, 22 , 517529.

    • Search Google Scholar
    • Export Citation
  • Kimball, B. A., , R. D. Jackson, , R. J. Reginato, , F. S. Nakayama, , and S. B. Idso, 1976: Comparison of field-measured and calculated soil-heat fluxes. Soil Sci. Soc. Amer. Proc, 40 , 1825.

    • Search Google Scholar
    • Export Citation
  • Matzinger, N., , M. Andretta, , E. van Gorsel, , R. Vogt, , A. Ohmura, , and M. W. Rotach, 2003: Surface radiation budget in an Alpine valley. Quart. J. Roy. Meteor. Soc, 129 , 877895.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc, 107 , 127.

  • Moore, I. D., , T. W. Norton, , and J. E. Williams, 1993: Modeling environmental heterogeneity in forested landscapes. J. Hydrol, 150 , 717747.

    • Search Google Scholar
    • Export Citation
  • Müller, H., , and C. D. Whiteman, 1988: Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. J. Appl. Meteor, 27 , 188194.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1978: Boundary Layer Climates. Methuen, 372 pp.

  • Oliphant, A. J., , R. A. Spronken-Smith, , A. P. Sturman, , and I. F. Owens, 2003: Spatial variability of surface radiation fluxes in mountainous terrain. J. Appl. Meteor, 42 , 113128.

    • Search Google Scholar
    • Export Citation
  • Rigollier, C., , O. Bauer, , and L. Wald, 2000: On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the heliosat method. Sol. Energy, 68 , 3348.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., , P. Calanca, , A. H. Weigel, , and M. Andretta, 2003: On the closure of the surface energy balance in highly complex terrain. Proc. Int. Conf. on Alpine Meteorology and MAP Meeting 2003, Brig, Switzerland, MeteoSwiss, 247–250.

  • Savov, P. B., , T. S. Skakalova, , I. N. Kolev, , and F. L. Ludwig, 2002: Lidar investigation of the temporal and spatial distribution of atmospheric aerosols in mountain valleys. J. Appl. Meteor, 41 , 528541.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area-height distribution of a valley and its relation to the valley wind. Beitr. Phys. Atmos, 57 , 6471.

  • van Ulden, A. P., , and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor, 24 , 11961207.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys. Part I: Observations. J. Appl. Meteor, 21 , 270289.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., , and T. B. McKee, 1982: Breakup of temperature inversions in deep mountain valleys. Part II: Thermodynamic model. J. Appl. Meteor, 21 , 290302.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , and K. J. Allwine, 1986: Extraterrestrial solar radiation on inclined surfaces. Environ. Software, 1 , 167169.

  • Whiteman, C. D., , K. J. Allwine, , L. J. Fritschen, , M. M. Orgill, , and J. R. Simpson, 1989a: Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J. Appl. Meteor, 28 , 414426.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , K. J. Allwine, , L. J. Fritschen, , M. M. Orgill, , and J. R. Simpson, 1989b: Deep valley radiation and surface energy budget microclimates. Part II: Energy budget. J. Appl. Meteor, 28 , 427437.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , B. Pospichal, , S. Eisenbach, , R. Steinacker, , M. Dorninger, , E. Mursch-Radlgruber, , and C. B. Clements, 2003: Temperature inversion breakup in the Gstettneralm sinkhole. Proc. Int. Conf. on Alpine Meteorology and MAP Meeting 2003, Brig, Switzerland, MeteoSwiss, 263–266.

  • Whiteman, C. D., , B. Pospichal, , S. Eisenbach, , P. Weihs, , C. B. Clements, , R. Steinacker, , E. Mursch-Radlgruber, , and M. Dorninger, 2004: Inversion breakup in small Rocky Mountain and Alpine basins. J. Appl. Meteor, 43 , 10691082.

    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M., 1994: Determination of the mean speed and momentum diffusivity profiles above tall vegetation and forest canopies using a mass conservation assumption. J. Appl. Meteor, 33 , 295303.

    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M., , and G. A. Efstathiou, 2006: Parameterization of inversion breakup in idealized valleys. Part I: The adjustable model parameters. J. Appl. Meteor. Climatol, 45 , 600608.

    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M., , A. G. Kelessis, , G. Kallos, , A. Triantafyllou, , B. Haralampidou, , Th I. Kozyraki, , F. K. Vosniakos, , and M. Manolopoulou, 1992: An analysis of the SO2, NO2 and particulates concentration levels under inversion break-up fumigations in the Ptolemais–Kozani Valley, Greece. Fresenius Environ. Bull, 1 , 700705.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 2
PDF Downloads 24 24 1

Parameterization of Inversion Breakup in Idealized Valleys. Part II: Thermodynamic Model

View More View Less
  • 1 Technological Educational Institution of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
© Get Permissions
Restricted access

Abstract

A simple thermodynamic parameterization based on a modified version of the Whiteman and McKee inversion destruction model is presented to simulate the evolution of vertical temperature structure during the inversion breakup period in idealized valleys under clear, undisturbed weather conditions. The proposed method adopts simplified semiempirical parameterizations of radiation and surface energy budgets at the valley floor and sidewalls and an empirical scheme for the partitioning of energy in the valley atmosphere, eliminating the need for selecting arbitrary values for the adjustable model parameters. The model accurately simulates the changes with time of the height of the inversion top and the depth of the convective boundary layer during the breakup of nocturnal temperature inversions in a wide range of valley topography. The theoretical estimates were validated and compared with dynamical model predictions and actual measurements. Because of its simplicity and its fair agreement with observations, the proposed method may be useful in applications in boundary layer, air pollution, and complex terrain meteorology. It is recognized that more work is necessary before the validity of the suggested procedure can be fully established.

Corresponding author address: Dr. N. M. Zoumakis, Technological Educational Institution of Thessaloniki, Laboratory of Atmospheric Physics, P.O. Box 141, Sindos 57400, Thessaloniki, Greece. Email: envatm@gen.teithe.gr

Abstract

A simple thermodynamic parameterization based on a modified version of the Whiteman and McKee inversion destruction model is presented to simulate the evolution of vertical temperature structure during the inversion breakup period in idealized valleys under clear, undisturbed weather conditions. The proposed method adopts simplified semiempirical parameterizations of radiation and surface energy budgets at the valley floor and sidewalls and an empirical scheme for the partitioning of energy in the valley atmosphere, eliminating the need for selecting arbitrary values for the adjustable model parameters. The model accurately simulates the changes with time of the height of the inversion top and the depth of the convective boundary layer during the breakup of nocturnal temperature inversions in a wide range of valley topography. The theoretical estimates were validated and compared with dynamical model predictions and actual measurements. Because of its simplicity and its fair agreement with observations, the proposed method may be useful in applications in boundary layer, air pollution, and complex terrain meteorology. It is recognized that more work is necessary before the validity of the suggested procedure can be fully established.

Corresponding author address: Dr. N. M. Zoumakis, Technological Educational Institution of Thessaloniki, Laboratory of Atmospheric Physics, P.O. Box 141, Sindos 57400, Thessaloniki, Greece. Email: envatm@gen.teithe.gr

Save