• Ackerman, S. A., , W. L. Smith, , H. E. Revercomb, , and J. D. Spinhirne, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Mon. Wea. Rev, 118 , 23772388.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , L. S. Darby, , P. Kaufmann, , D. H. Levinson, , and C. J. Zhu, 1999: Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor, 38 , 10691083.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , D. P. Kratz, , P. Yang, , S. C. Ou, , Y. Hu, , P. F. Soulen, , and S. C. Tsay, 2000: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. I. Data and models. J. Geophys. Res, 105 , 1176711780.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , J. Pelon, , G. Brogniez, , C. Flamant, , V. Trouillet, , and P. H. Flamant, 1999: Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: Application to spaceborne and airborne backscatter lidar measurements during LITE mission and E LITE campaign. Geophys. Res. Lett, 26 , 22032206.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., , H. Chepfer, , V. Noel, , A. Delaval, , M. Haeffelin, , P. Dubuisson, , and P. Yang, 2004: Coupling infrared radiometer and lidar observations for retrieving semi-transparent cirrus clouds particle size. Mon. Wea. Rev, 132 , 16841700.

    • Search Google Scholar
    • Export Citation
  • Collis, R. T. H., , and P. B. Russell, 1976: Lidar measurements of particles and gases by elastic backscattering and differential absorption. Laser Monitoring of the Atmosphere. E. D. Hinkley, Ed. Springer-Verlag, 71–151.

    • Search Google Scholar
    • Export Citation
  • Dabas, A. M., , P. Drobinski, , and P. H. Flamant, 1998: Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar. J. Atmos. Oceanic Technol, 15 , 407415.

    • Search Google Scholar
    • Export Citation
  • Dabas, A. M., , P. Drobinski, , and P. H. Flamant, 2000: Velocity biases of adaptive filter estimates in heterodyne Doppler lidar measurements. J. Atmos. Oceanic Technol, 17 , 11891202.

    • Search Google Scholar
    • Export Citation
  • Dabas, A. M., , P. Drobinski, , O. Reitebuch, , E. Richard, , P. Delville, , P. H. Flamant, , and C. Werner, 2003: Multiscale analysis of a straight jet streak using numerical analyses and airborne Doppler lidar measurements. Geophys. Res. Lett, 30 .1049, doi:10.1029/2001GL014040.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., , R. A. Brown, , P. H. Flamant, , and J. Pelon, 1998: Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Bound.-Layer Meteor, 88 , 343361.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., , C. Haeberli, , E. Richard, , M. Lothon, , A. M. Dabas, , P. H. Flamant, , M. Furger, , and R. Steinacker, 2003: Scale interaction processes during MAP-IOP 12 south foehn event in the Rhine valley. Quart. J. Roy. Meteor. Soc, 129 , 729754.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., , J. C. Buriez, , and Y. Fouquart, 1996: High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulation. J. Quant. Spectrosc. Radiat. Transfer, 55 , 103126.

    • Search Google Scholar
    • Export Citation
  • Elouragini, S., 1995: Etude des nuages par télédétection radar laser (lidar). Ph.D. thesis, Faculté des Sciences de Tunis, 75 pp.

  • Goodman, J. W., 1984: Statistical properties of laser speckles patterns. Laser Speckles and Related Phenomena, J. C. Dainty, Ed., Topics in Applied Physics, Vol. 9, Springer Verlag, 51–58.

    • Search Google Scholar
    • Export Citation
  • Guérit, G., , P. Drobinski, , P. H. Flamant, , and J. P. Cariou, 2002: Effectiveness of simultaneous independent realizations at low carrier-to-noise ratio to improve heterodyne Doppler lidar performance. Part I: Theory and numerical simulations. Appl. Opt, 41 , 22322239.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci, 32 , 799807.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1993: Microphysical structure of stratiform and cirrus clouds. Aerosol Cloud Climate Interactions, P. V. Hobbs, Ed., International Geophysics Series, Vol. 54, Academic Press, 97–121.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci, 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10 microns window region. J. Meteor. Soc. Japan, 63 , 8899.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , G. L. Stephens, , W. L. Eberhard, , and T. Uttal, 1993: A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique. J. Appl. Meteor, 32 , 10741082.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , W. L. Eberhard, , T. Uttal, , J. A. Shaw, , J. B. Snider, , Y. Han, , and B. W. Orr, 1995: Multi-wavelength observations of a developing cloud system: The FIRE II 26 November 1991 case study. J. Atmos. Sci, 52 , 40794093.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens, 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Krupp, C., 1991: Holographic measurements of ice crystals in cirrus clouds during the International Cloud Experiment ICE 1989. Report of the Fourth ICE/EUCREX Workshop, Lille, France, Laboratoire d'Optique Atmosphérique, USTL.

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev, 114 , 11671199.

  • Lynch, D. K., , K. Sassen, , D. O'C. Starr, , and G. Stephens, 2002: Cirrus. Oxford University Press, 504 pp.

  • McClatchey, R. A., , R. W. Fenn, , J. E. A. Selby, , F. E. Volz, , and J. S. Garing, 1972: Optical properties of the atmosphere. 3d ed. Air Force Cambridge Research Laboratory, Hanscom Air Force Base Publication AFCRL-72-0497, 108 pp.

  • Miloshevich, L. M., , and A. J. Heymsfield, 1996: A balloon-borne cloud particle replicator for measuring vertical profiles of cloud microphysics: Instrument design and performance. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, Switzerland.

  • Minnis, P., , D. P. Garber, , and D. F. Young, 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci, 55 , 33133339.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Amer, 79 , 871882.

  • Noel, V., , H. Chepfer, , G. Ledanois, , A. Delaval, , and P. H. Flamant, 2002: Classification of effective shape ratios in cirrus clouds based on lidar depolarization ratio. Appl. Opt, 41 , 42454257.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , H. Gerber, , and P. V. Hobbs, 2001: A solar reflectance technique for cloud retrievals over snow and ice surfaces. J. Geophys. Res, 106 , 1518515199.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci, 30 , 11911204.

  • Platt, C. M. R., , S. A. Young, , P. J. Manson, , G. R. Patterson, , S. C. Marsden, , and T. Austin, 1998: The optical properties of equatorial cirrus from observations in the ARM pilot Radiation Observation Experiment. J. Atmos. Sci, 55 , 19771996.

    • Search Google Scholar
    • Export Citation
  • Post, M. J., , and W. D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc, 67 , 274281.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc, 72 , 18481866.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and K. N. Liou, 1979: Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: Angular depolarizing and multiple-scattering behavior. J. Atmos. Sci, 36 , 852861.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., 1982: Lidar clear atmosphere multiple scattering dependence on receiver range. Appl. Opt, 21 , 24672468.

  • Stephens, G. L., , S. C. Tsay, , P. W. Stackhouse, , and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci, 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , W. B. Rossow, , F. Cheruy, , A. Chedin, , and N. A. Scott, 1999: Cloud as seen by satellite sounders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters. J. Climate, 12 , 21892213.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , R. K. Moore, , and A. K. Fung, 1986: Microwave Remote Sensing: Active and Passive. Vol. 1, Microwave Remote Sensing Fundamentals and Radiometry, Artech House, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., , E. E. Clothiaux, , T. P. Ackerman, , J. M. Intrieri, , and W. L. Eberhard, 1995: Cloud boundary statistics during FIRE II. J. Atmos. Sci, 52 , 42764284.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , J. Pelon, , and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environmental Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering, (SPIE Proceedings Vol. 4893), 1–11.

  • Yang, P., , B. Gao, , B. A. Baum, , Y. X. Hu, , W. J. Wiscombe, , S. Tsay, , and D. M. Winker, 2001: Radiative properties of cirrus couds in the infrared (8-13μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer, 70 , 473504.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 1
PDF Downloads 6 6 1

Dual Lidar Observations at 10.6 μm and 532 nm for Retrieving Semitransparent Cirrus Cloud Properties

View More View Less
  • 1 IPSL/LMD, Université Pierre et Marie Curie, Paris, France
  • | 2 AS&M, Hampton, Virginia
  • | 3 IPSL/LMD, Université Pierre et Marie Curie, Paris, France
  • | 4 IPSL/SA, Université Pierre et Marie Curie, Paris, France
© Get Permissions
Restricted access

Abstract

To improve the estimation of the infrared radiances in cirrus clouds, one needs to consider the vertical inhomogeneities of the cloud properties. The position of the maximum of absorption within an ice cloud is potentially important to the improvement of the split-window techniques for retrieving particle size and for understanding the radiative effect of the cloud in the infrared spectrum. Current remote sensing techniques used for inferring ice clouds hardly reach the level of accuracy required to resolve the vertical inhomogeneities of a cloud and to determine the position of absorption. This study explores the possibility of retrieving the vertical structures of ice clouds by combining data from two lidar measurements acquired at the wavelengths of 532 nm and 10.6 μm. A method is proposed to retrieve the variability of ice crystal absorption efficiency at 10.6 μm, the particle concentration weighted by the crystal area, and the attenuation by absorption at 10.6 μm. The method is tested against observations collected at Site Instrumental de Recherche en Télédétection Atmosphérique (SIRTA) in Palaiseau, France. Observations and simulations both show that lidar observations collected simultaneously at those two wavelengths can be used to determine the level within the ice cloud where maximum attenuation of infrared radiation occurs. The maximum attenuation may occur near the cloud base or the cloud top, depending on the case studied.

Corresponding author address: Marjolaine Chiriaco, LMD, Tour 45-55 3e étage, BP 99, 4 place Jussieu, 75252 Paris Cedex 05, France. Email: chiriaco@lmd.jussieu.fr

Abstract

To improve the estimation of the infrared radiances in cirrus clouds, one needs to consider the vertical inhomogeneities of the cloud properties. The position of the maximum of absorption within an ice cloud is potentially important to the improvement of the split-window techniques for retrieving particle size and for understanding the radiative effect of the cloud in the infrared spectrum. Current remote sensing techniques used for inferring ice clouds hardly reach the level of accuracy required to resolve the vertical inhomogeneities of a cloud and to determine the position of absorption. This study explores the possibility of retrieving the vertical structures of ice clouds by combining data from two lidar measurements acquired at the wavelengths of 532 nm and 10.6 μm. A method is proposed to retrieve the variability of ice crystal absorption efficiency at 10.6 μm, the particle concentration weighted by the crystal area, and the attenuation by absorption at 10.6 μm. The method is tested against observations collected at Site Instrumental de Recherche en Télédétection Atmosphérique (SIRTA) in Palaiseau, France. Observations and simulations both show that lidar observations collected simultaneously at those two wavelengths can be used to determine the level within the ice cloud where maximum attenuation of infrared radiation occurs. The maximum attenuation may occur near the cloud base or the cloud top, depending on the case studied.

Corresponding author address: Marjolaine Chiriaco, LMD, Tour 45-55 3e étage, BP 99, 4 place Jussieu, 75252 Paris Cedex 05, France. Email: chiriaco@lmd.jussieu.fr

Save