• André, J-C., , J-P. Goutorbe, , and A. Perrier, 1986: HAPEX-MOBILHY: A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Amer. Meteor. Soc, 67 , 138144.

    • Search Google Scholar
    • Export Citation
  • Belhadj, N., , C. Joannis, , and G. Raimbault, 1995: Modelling of rainfall induced infiltration into separate sewerage. Water Sci. Technol, 32 , 161168.

    • Search Google Scholar
    • Export Citation
  • Berthier, E., 1999: Contribution à une modélisation hydrologique à base physique en milieu urbain. Ph.D. thesis, INPG–LCPC, 196 pp.

  • Berthier, E., , F. Rodriguez, , and H. Andrieu, 1999: The Rezé urban catchments database. Water Resour. Res, 35 , 19151919.

  • Berthier, E., , H. Andrieu, , and J. D. Creutin, 2004: The role of soil in the generation of urban runoff: Development and evaluation of a 2D model. J. Hydrol, 299 , 252266.

    • Search Google Scholar
    • Export Citation
  • Berthier, E., , S. Dupont, , P. G. Mestayer, , and H. Andrieu, 2006: Comparison of two evapotranspiration schemes on a sub-urban site. J. Hydrol, in press.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor, 114 , 91109.

  • Bolle, H. J., and Coauthors, 1993: EFEDA: European Field Experiment in a Desertification-threatened Area. Ann. Geophys, 11 , 173189.

  • Boone, A., , J. C. Calvet, , and J. Noilhan, 1999: Inclusion of a third soil layer in a land surface scheme using the force-restore method. J. Appl. Meteor, 38 , 16111630.

    • Search Google Scholar
    • Export Citation
  • Bottema, M., 1997: Urban roughness modelling in relation to pollutant dispersion. Atmos. Environ, 31 , 30593075.

  • Boyd, M. J., , M. C. Bufill, , and R. M. Knee, 1994: Predicting pervious and impervious storm runoff from urban drainage basins. Hydrol. Sci, 39 , 321332.

    • Search Google Scholar
    • Export Citation
  • Braud, I., , J. Noilhan, , J. Bessemoulin, , and P. Mascart, 1993: Bare-ground surface heat and water exchanges under dry conditions: Observations and parameterization. Bound.-Layer Meteor, 66 , 173200.

    • Search Google Scholar
    • Export Citation
  • Burian, S., , S. Stetson, , W. Han, , J. K. S. Ching, , and D. Byun, 2004: High resolution dataset of urban canopy parameters for Houston, Texas. Preprints, Fifth Urban Environment Symp., Vancouver BC, Canada, Amer. Meteor. Soc., CD-ROM, 9.3.

  • Clapp, R., , and G. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res, 14 , 601604.

  • Danish Hydraulic Institute, 1996: An integrated modelling package for urban drainage and sewer systems. MOUSE user manual, CD-ROM, version 4.0.

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res, 83 , 18891903.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., 2001: Modélisation dynamique et thermodynamique de la canopée urbaine: Réalisation du modèle de sols urbains pour SUBMESO. Ph.D. thesis, Université de Nantes, 319 pp.

  • Dupont, S., , and P. G. Mestayer, 2004: Evaluation of the urban soil model SM2-U on the city center of Marseille (France). Preprints, Fifth Symp. on Urban Environment, Vancouver, BC, Canada, Amer. Meteor. Soc., CD-ROM, 9.14.

  • Dupont, S., , and P. G. Mestayer, 2006: Parameterization of the urban energy budget with the Submesoscale Soil Model. J. Appl. Meteor. Climatol, in press.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., , I. Calmet, , and P. G. Mestayer, 2002: Urban canopy modeling influence on urban boundary layer simulation. Preprints, Fourth Symp. on Urban Environment, Norfolk, VA, Amer. Meteor. Soc., 151–152.

  • Dupont, S., , T. L. Otte, , and J. K. S. Ching, 2004a: Simulation of meteorological fields within and above urban and rural canopies with a Mesoscale Model (MM5). Bound.-Layer Meteor, 113 , 111158.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., , J. K. S. Ching, , and S. Burian, 2004b: Introduction of urban canopy parameterizations into MM5 to simulate meteorology at neighborhood scales. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., CD-ROM, 4.4.

  • Giordani, H., , J. Noilhan, , P. Lacarrere, , P. Bessemoulin, , and P. Mascart, 1996: Modelling the surface processes and the atmospheric boundary layer for semi-arid conditions. Agric. For. Meteor, 80 , 263287.

    • Search Google Scholar
    • Export Citation
  • Goutorbe, J. P., 1991: A critical assessment of the SAMER network accuracy. Land Surface Evaporation: Measurement and Parameterization, T. J. Schmugge and J. C. André, Eds., Springer-Verlag, 171–182.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and T. R. Oke, 1991: An evapotranspiration-interception model for urban areas. Water Resour. Res, 27 , 17391755.

  • Grimmond, C. S. B., , and T. R. Oke, 1999: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor, 38 , 922940.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). J. Appl. Meteor, 41 , 792810.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , T. S. King, , M. Roth, , and T. R. Oke, 1998: Aerodynamic roughness of urban areas derived from wind observations. Bound.-Layer Meteor, 89 , 124.

    • Search Google Scholar
    • Export Citation
  • Guilbaud, C., 1996: Etude des inversions thermiques: Application aux écoulements atmosphériques dans des vallées encaissées. Ph.D. thesis, University Joseph Fourier, 189 pp.

  • Guilloteau, E., 1998: Optimized computation of transfer coefficients in surface layer with different momentum and heat roughness lengths. Bound.-Layer Meteor, 87 , 147160.

    • Search Google Scholar
    • Export Citation
  • Guilloteau, E., 1999: Modélisation des sols urbains pour les simulations de l'atmosphère aux échelles sub-meso. Ph.D. thesis, Ecole Centrale and University of Nantes, 160 pp.

  • Hollis, G. E., , and J. C. Ovenden, 1988a: The quantity of stormwater runoff from ten stretches of road, a car park and eight roofs in Hertfordshire, England during 1983. Hydrol. Processes, 2 , 227243.

    • Search Google Scholar
    • Export Citation
  • Hollis, G. E., , and J. C. Ovenden, 1988b: One year irrigation experiment to assess losses and runoff volume relationships for residential road in Hertfordshire, England. Hydrol. Processes, 2 , 6174.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., , and S. Islam, 1995: Prediction of ground surface temperature and soil moisture content by the force–restore method. Water Resour. Res, 31 , 25312539.

    • Search Google Scholar
    • Export Citation
  • INSAVALOR and Sogreah, 1997: CANOE, logiciel d'hydrologie urbaine, conception et évaluation de réseaux d'assainissement, simulation des pluies, des écoulements et de la qualité des eaux. Users manual, 476 pp.

  • Jacquemin, B., , and J. Noilhan, 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor, 52 , 93134.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., , G. Ni, , Y. Kawahara, , and T. Suetsugi, 2001: Development of WEP model and its application to an urban watershed. Hydrol. Processes, 15 , 21752194.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., , and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor, 104 , 463490.

  • Long, N., , G. Pigeon, , P. G. Mestayer, , P. Durand, , and C. Kergomard, 2003: Correlation between temperature and classification of urban fabric on Marseille during ESCOMPTE. Proc. Fifth Int. Conf. on Urban Climate, Lodz, Poland, 95–98.

  • Mahura, A., , P. G. Mestayer, , S. Dupont, , I. Calmet, , A. Baklanov, , S. Leroyer, , and N. Long, 2004: Comparison of short and long-term modelled latent, sensible, and storage heat fluxes employing numerical weather prediction model with and without urbanized modules. Proc. Fourth Annual Meeting of the European Meteorological Society, Vol. 1, Nice, France, European Meteorological Society, 391.

  • Martilli, A., , A. Clappier, , and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor, 104 , 261304.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor, 98 , 357397.

  • Monteith, J. L., 1976: Case Studies. Vol. 2, Vegetation and the Atmosphere, Academic Press, 439 pp.

  • Nash, J. E., , and J. V. Sutcliffe, 1970: River flow forcasting through conceptual models. Part I—A discussion of principle. J. Hydrol, 10 , 282290.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev, 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and J-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13 , 145159.

  • Pleim, J. E., , and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor, 34 , 1632.

    • Search Google Scholar
    • Export Citation
  • Raimbault, G., 1996: Effet des sols et sous-sol urbains sur le devenir des eaux pluviales. Bull. Lab. Ponts Chaussées, 202 , 7178.

  • Ramier, D., , E. Berthier, , and H. Andrieu, 2004: An urban lysimeter to assess runoff losses on asphalt concrete plates. Phys. Chem. Earth, 29 , 839847.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1992: Drag and drag partition on roughness surfaces. Bound.-Layer Meteor, 60 , 375395.

  • Rossman, L. A., 2004: Storm Water Management Model. User's manual version 5.0, United States Environmental Protection Agency, 235 pp.

  • Shao, Y., , and A. Henderson-Sellers, 1996: Validation of soil moisture simulation in land surface parameterization schemes with HAPEX data. Global Planet. Change, 13 , 1146.

    • Search Google Scholar
    • Export Citation
  • Wallingford Software, Ltd., cited 1997: Using HydroWorks. [Available online at http://www.wallingfordsoftware.com/.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 5
PDF Downloads 26 26 2

Parameterization of the Urban Water Budget with the Submesoscale Soil Model

View More View Less
  • 1 Laboratoire de Mécanique des Fluides, Ecole Centrale de Nantes, Nantes, France
  • | 2 Laboratoire Central des Ponts et Chaussées, Nantes, France
© Get Permissions
Restricted access

Abstract

This paper presents the hydrological component of the Submesoscale Soil Model, urbanized version (SM2-U). This model is an extension of the rural Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil model to urban surfaces. It considers in detail both rural and urban surfaces. Its purpose is to compute the sensible heat and humidity fluxes at the canopy–atmosphere interface for the computational domain lower boundary condition of atmospheric mesoscale models in order to simulate the urban boundary layer in any weather conditions. Because it computes separately the surface temperature of each land use cover mode while the original model computes a unique temperature for the soil and vegetation system, the new version is first validated for rural grounds by comparison with experimental data from the Hydrological Atmospheric Pilot Experiment-Modélisation du Bilan Hydrique (HAPEX-MOBILHY) and the European Field Experiment in a Desertification Threatened Area (EFEDA). The SM2-U water budget is then evaluated on the experimental data obtained at a suburban site in the Nantes urban area (Rezé, France), both on an annual scale and for two stormy events. SM2-U evaluates correctly the water flow measured in the drainage network (DN) at the annual scale and for the summer storm. As for the winter storm, when the soil is saturated, the simulation shows that water infiltration from the soil to the DN must be taken care of to evaluate correctly the DN flow. Yet, the addition of this soil water infiltration to the DN does not make any difference in the simulated surface fluxes that are the model outputs for simulating the urban boundary layer. Urban hydrological parameters are shown to largely influence the available water on artificial surfaces for evaporation and to influence less the evapotranspiration from natural surfaces. The influence of the water budget and surface structure on the suburban site local climatology is demonstrated.

Corresponding author address: Sylvain Dupont, EPHYSE, INRA Bordeaux, BP 81, F-33883 Villenave d'Ornon, France. Email: sdupont@bordeaux.inra.fr

Abstract

This paper presents the hydrological component of the Submesoscale Soil Model, urbanized version (SM2-U). This model is an extension of the rural Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil model to urban surfaces. It considers in detail both rural and urban surfaces. Its purpose is to compute the sensible heat and humidity fluxes at the canopy–atmosphere interface for the computational domain lower boundary condition of atmospheric mesoscale models in order to simulate the urban boundary layer in any weather conditions. Because it computes separately the surface temperature of each land use cover mode while the original model computes a unique temperature for the soil and vegetation system, the new version is first validated for rural grounds by comparison with experimental data from the Hydrological Atmospheric Pilot Experiment-Modélisation du Bilan Hydrique (HAPEX-MOBILHY) and the European Field Experiment in a Desertification Threatened Area (EFEDA). The SM2-U water budget is then evaluated on the experimental data obtained at a suburban site in the Nantes urban area (Rezé, France), both on an annual scale and for two stormy events. SM2-U evaluates correctly the water flow measured in the drainage network (DN) at the annual scale and for the summer storm. As for the winter storm, when the soil is saturated, the simulation shows that water infiltration from the soil to the DN must be taken care of to evaluate correctly the DN flow. Yet, the addition of this soil water infiltration to the DN does not make any difference in the simulated surface fluxes that are the model outputs for simulating the urban boundary layer. Urban hydrological parameters are shown to largely influence the available water on artificial surfaces for evaporation and to influence less the evapotranspiration from natural surfaces. The influence of the water budget and surface structure on the suburban site local climatology is demonstrated.

Corresponding author address: Sylvain Dupont, EPHYSE, INRA Bordeaux, BP 81, F-33883 Villenave d'Ornon, France. Email: sdupont@bordeaux.inra.fr

Save