• Baker, M. B., , R. G. Corbin, , and J. Latham, 1980: The effects of turbulent mixing in clouds. Quart. J. Roy. Meteor. Soc, 106 , 581598.

  • Beard, K. V., , R. I. Durkee, , and H. T. Ochs, 2002: Coalescence efficiency measurements for minimally charged cloud drops. J. Atmos. Sci, 59 , 233243.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., , and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci, 31 , 18141824.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci, 55 , 22842293.

  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc, 80 , 805820.

    • Search Google Scholar
    • Export Citation
  • Collins, L. R., , and A. Keswani, 2004: Reynolds number scaling of particle clustering in turbulent aerosols. New J. Phys, 6 .119, doi:10.1088/1367-2630/6/1/119.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , and R. A. Pielke, 1995: Human Impacts on Weather and Climate. Cambridge University Press, 296 pp.

  • Dennis, A. S., 1980: Weather Modification by Cloud Seeding. Academic Press, 267 pp.

  • Falkovich, G., , and A. Pumir, 2004: Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids, 16 , L47L50.

  • Falkovich, G., , A. Fouxon, , and M. G. Stepanov, 2002: Acceleration of rain initiation by cloud turbulence. Nature, 419 , 151154.

  • Franklin, C., , P. Vaillancourt, , M. K. Yau, , and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci, 62 , 24512466.

    • Search Google Scholar
    • Export Citation
  • Grits, B., , M. Pinsky, , and A. Khain, 2000: Formation of small-scale droplet concentration inhomogeneity in a turbulent flow as seen from experiments with an isotropic turbulence model. Proc. 13th Int. Conf. on Clouds and Precipitation, Reno, NV, ICCP, 132–134.

  • Gunn, R., , and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor, 6 , 243248.

  • Korolev, A., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci, 52 , 36203634.

  • Kostinski, A., , and R. Shaw, 2001: Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech, 434 , 389398.

  • Liu, Y. G., , and J. Hallett, 1997: The “1/3” power law between effective radius and liquid-water content. Quart. J. Roy. Meteor. Soc, 123 , 17891795.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., , P. H. Daum, , and J. Hallett, 2002: A generalized systems theory for the effect of varying fluctuations on cloud droplet size distributions. J. Atmos. Sci, 59 , 22792290.

    • Search Google Scholar
    • Export Citation
  • Mather, G. K., 1991: Coalescence enhancement in large multicell storms caused by the emissions from a Kraft paper mill. J. Appl. Meteor, 30 , 11341146.

    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., 1987: The gravitational settling of aerosol particles in homogeneous turbulence and random flow field. J. Fluid Mech, 174 , 441465.

    • Search Google Scholar
    • Export Citation
  • McGraw, R., , and Y. Liu, 2003: Kinetic potential and barrier crossing: A model for warm cloud drizzle formation. Phys. Rev. Lett, 90 .doi:10.1103/PhysRevLett.90.018501.

    • Search Google Scholar
    • Export Citation
  • McGraw, R., , and Y. Liu, 2004: Analytic formulation and parametrization of the kinetic potential theory for drizzle formation. Phys. Rev. E, 70 .doi:10.1103/PhysRevE.70.031606.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , A. Khain, , and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers. J. Atmos. Sci, 58 , 742766.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 976 pp.

  • Reade, W., , and L. Collins, 2000: Effect of preferential concentration on turbulent collision rates. Phys. Fluids, 12 , 25302540.

  • Rosenfeld, D., , and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res, 34 , 259283.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , Y. Rudich, , and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98 , 59755980.

    • Search Google Scholar
    • Export Citation
  • Saffman, P., , and J. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech, 1 , 1630.

  • Seinfeld, J., , and S. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Shaw, R., , W. Reade, , L. Collins, , and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effect on early evolution of cumulus cloud droplet spectra. J. Atmos. Sci, 55 , 19651976.

    • Search Google Scholar
    • Export Citation
  • Squires, K., 1958: The microstructure and colloidal stability of warm clouds. Tellus, 10 , 256261.

  • Squires, K., , and J. Eaton, 1991: Measurements of particle dispersion from direct numerical simulations of isotropic turbulence. J. Fluid Mech, 226 , 135.

    • Search Google Scholar
    • Export Citation
  • Sundaram, S., , and L. Collins, 1997: Collision statistics in an isotropic particle-laden turbulent suspension. J. Fluid Mech, 335 , 75109.

    • Search Google Scholar
    • Export Citation
  • Turitsyn, K. S., 2003: Air parcel random walk and droplet spectra broadening in clouds. Phys. Rev. E, 67 , 062102062103.

  • Vaillancourt, P. A., , and M. K. Yau, 2000: Review of particle-turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc, 81 , 285298.

    • Search Google Scholar
    • Export Citation
  • van Dongen, P. G. J., , and M. H. Ernst, 1988: Scaling solutions of Smoluchowski's coagulation equation. J. Stat. Phys, 50 , 295328.

  • Wang, L-P., , O. Ayala, , S. Kasprzak, , and W. Grabowski, 2005: Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci, 62 , 24332450.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V., , V. Lvov, , and G. Falkovich, 1992: Kolmogorov Spectra of Turbulence. Springer-Verlag, 264 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 1
PDF Downloads 12 12 1

Rain Initiation Time in Turbulent Warm Clouds

View More View Less
  • 1 Institute for Advanced Study, Princeton, New Jersey, and Weizmann Institute of Science, Rehovot, Israel
  • | 2 University of Belgrade, Belgrade, Serbia and Montenegro, and Weizmann Institute of Science, Rehovot, Israel
© Get Permissions
Restricted access

Abstract

A mean field model is presented that describes droplet growth resulting from condensation and collisions and droplet loss resulting from fallout. The model allows for an effective numerical simulation. The numerical scheme that is conservative in water mass and keeps accurate count of the number of droplets is applied, and the way in which the rain initiation time depends on different parameters is studied. In particular, it is shown that the rain initiation time depends nonmonotonically (has a minimum) on the number of cloud condensation nuclei. Also presented is a simple model that allows one to estimate the rain initiation time for turbulent clouds with an inhomogeneous concentration of cloud condensation nuclei. It is argued that by overseeding even a part of a cloud by small hygroscopic nuclei one can substantially delay the onset of precipitation.

Corresponding author address: G. Falkovich, Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Email: gregory.falkovich@weizmann.ac.il

Abstract

A mean field model is presented that describes droplet growth resulting from condensation and collisions and droplet loss resulting from fallout. The model allows for an effective numerical simulation. The numerical scheme that is conservative in water mass and keeps accurate count of the number of droplets is applied, and the way in which the rain initiation time depends on different parameters is studied. In particular, it is shown that the rain initiation time depends nonmonotonically (has a minimum) on the number of cloud condensation nuclei. Also presented is a simple model that allows one to estimate the rain initiation time for turbulent clouds with an inhomogeneous concentration of cloud condensation nuclei. It is argued that by overseeding even a part of a cloud by small hygroscopic nuclei one can substantially delay the onset of precipitation.

Corresponding author address: G. Falkovich, Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Email: gregory.falkovich@weizmann.ac.il

Save