Abstract
The synoptic patterns and boundary layer conditions over a range of antecedent periods associated with the summertime hot events for the years 1951–93 are examined. A hot event is defined as a single day with the highest average daily temperature within a surrounding 5-day window. Among these events, four event subtypes were determined on the basis of extreme values of temperature and/or dewpoint. Composite synoptic maps and vertical profiles of atmospheric variables are produced to distinguish the hottest and moistest events. The hot events, including the extreme categories, are influenced by similar large-scale circulation features. The region is under the control of the Bermuda high, which is centered off the coast of Florida and in the Atlantic Ocean. An upstream 500-hPa ridge produces subsidence and adiabatic warming in the midlevels of the troposphere. Composite patterns of the hottest and moistest events indicate stronger upstream 500-hPa ridging and upper-level subsidence, which suggest greater suppression of local convection and reduction in the upward turbulence transfer of surface sensible heat and water vapor. The moistest events are tied to considerably greater antecedent precipitation, which suggests increased evapotranspiration and accumulation of water vapor near the ground. The extreme hot and humid events are also associated with greater accumulated precipitation hours in the antecedent periods, especially on a 30-day scale. The hottest events also have less sky cover in the 30-day antecedent period, allowing more insolation and surface heating. The extreme events also have greater atmospheric thickness, lighter winds, and greater westerly component in the winds. Synoptic analysis shows that low-level thermal and moisture advection are not significant contributors to the heat and moisture in the extreme events of the Piedmont region.
Corresponding author address: Dr. Charles E. Konrad II, Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220. Email: cek@email.unc.edu