Area-Averaged Surface Fluxes in a Semiarid Region with Partly Irrigated Land: Lessons Learned from EFEDA

M. Anna Osann Jochum ALFAclima Asesoramiento Medioambiental, Albacete, Spain, and Wageningen University, Wageningen, Netherlands

Search for other papers by M. Anna Osann Jochum in
Current site
Google Scholar
PubMed
Close
,
Hendrik A. R. de Bruin Wageningen University, Wageningen, Netherlands

Search for other papers by Hendrik A. R. de Bruin in
Current site
Google Scholar
PubMed
Close
,
Albert A. M. Holtslag Wageningen University, Wageningen, Netherlands

Search for other papers by Albert A. M. Holtslag in
Current site
Google Scholar
PubMed
Close
, and
Alfonso Calera Belmonte Universidad de Castilla-La Mancha, Albacete, Spain

Search for other papers by Alfonso Calera Belmonte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The European Field Experiment in a Desertification-Threatened Area (EFEDA) provides a comprehensive land surface dataset for a semiarid Mediterranean environment with natural vegetation and cultivated dry and irrigated land. This paper discusses the methods and practical aspects of deriving area-averaged fluxes for a range of areas from the whole EFEDA region to several numerical weather prediction model grid cells (on 10–100-km scales). A time series of grid-scale surface fluxes for the entire observational period of 1 month was obtained from weighted surface averages, using a crop phenology–based land use classification together with a homogenized set of surface observations representative of the four major vegetation classes. The flux-aggregated surface observations were compared with two other approaches to obtain grid-scale fluxes (airborne flux observations and radiosondes in conjunction with a simple mixed-layer model). The area-aggregated fluxes (in particular of latent heat) depend strongly on the location of the area boundaries whenever a significant fraction of irrigated land is present. This result confirms clearly the importance of adequately accounting for tiles of irrigated land in surface schemes and corresponding physiographic databases of large-scale models. A simple way to accommodate for minimum information on the canopy water status is proposed in terms of the distinction of at least two seasonal classes of irrigated crops—one of spring and one of summer growing cycles. The main lesson from this aggregation exercise concerns the role of irrigation. First, this study quantifies the uncertainties in the space–time pattern and its effects on aggregated surface fluxes for the first time on the grounds of observational data. Second, it demonstrates practical ways to accomplish the parameterization of irrigation in flux aggregation schemes, by identifying the key data along with their possible sources and by defining a practical implementation procedure.

Corresponding author address: Dr. M. Anna Osann Jochum, ALFAclima Asesoramiento Medioambiental, Avenida de España, 9, E-02002 Albacete, Spain. Email: ajochum@terra.es

Abstract

The European Field Experiment in a Desertification-Threatened Area (EFEDA) provides a comprehensive land surface dataset for a semiarid Mediterranean environment with natural vegetation and cultivated dry and irrigated land. This paper discusses the methods and practical aspects of deriving area-averaged fluxes for a range of areas from the whole EFEDA region to several numerical weather prediction model grid cells (on 10–100-km scales). A time series of grid-scale surface fluxes for the entire observational period of 1 month was obtained from weighted surface averages, using a crop phenology–based land use classification together with a homogenized set of surface observations representative of the four major vegetation classes. The flux-aggregated surface observations were compared with two other approaches to obtain grid-scale fluxes (airborne flux observations and radiosondes in conjunction with a simple mixed-layer model). The area-aggregated fluxes (in particular of latent heat) depend strongly on the location of the area boundaries whenever a significant fraction of irrigated land is present. This result confirms clearly the importance of adequately accounting for tiles of irrigated land in surface schemes and corresponding physiographic databases of large-scale models. A simple way to accommodate for minimum information on the canopy water status is proposed in terms of the distinction of at least two seasonal classes of irrigated crops—one of spring and one of summer growing cycles. The main lesson from this aggregation exercise concerns the role of irrigation. First, this study quantifies the uncertainties in the space–time pattern and its effects on aggregated surface fluxes for the first time on the grounds of observational data. Second, it demonstrates practical ways to accomplish the parameterization of irrigation in flux aggregation schemes, by identifying the key data along with their possible sources and by defining a practical implementation procedure.

Corresponding author address: Dr. M. Anna Osann Jochum, ALFAclima Asesoramiento Medioambiental, Avenida de España, 9, E-02002 Albacete, Spain. Email: ajochum@terra.es

Save
  • Adegoke, J. O., R. R. Pielke Sr., J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. High Plains. Mon. Wea. Rev, 131:556564.

    • Search Google Scholar
    • Export Citation
  • Allen, R. A., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp.

  • André, J. C., Coauthors 1988: HAPEX-MOBILHY: First results from the special observing period. Ann. Geophys, 6:477492.

  • André, J. C., P. Bougeault, and J-P. Goutorbe, 1990: Regional estimates of heat and evaporation fluxes over non-homogeneous terrain; examples from the HAPEX-MOBILHY program. Bound.-Layer Meteor, 50:77108.

    • Search Google Scholar
    • Export Citation
  • Bange, J., F. Beyrich, and D. A. M. Engelbart, 2002: Airborne measurements of turbulent fluxes during LITFASS-98: Comparison with ground measurements and remote sensing in a case study. Theor. Appl. Climatol, 73:3551.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., H. Pelgrum, P. Droogers, H. A. R. de Bruin, and M. Menenti, 1997: Area-average estimates of evaporation, wetness indicators and top soil moisture during two golden days in EFEDA. Agric. For. Meteor, 87:119137.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M. and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor, 30:327341.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. L. Desjardins, J. I. McPherson, and R. D. Kelly, 1992: Budget analysis of the boundary layer grid flights during FIFE 1987. J. Geophys. Res, 97:1853318546.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., H. J. Herzog, and J. Neisser, 2002: The LITFASS project of DWD and the LITFASS-98 experiment: The project strategy and the experimental setup. Theor. Appl. Climatol, 73:3551.

    • Search Google Scholar
    • Export Citation
  • Bolle, H-J., Coauthors 1993: EFEDA: European Field Experiment in a Desertification-threatened Area. Ann. Geophys, 11:173189.

  • Calera Belmonte, A., 2000: Seguimiento mediante teledetección de la cubierta vegetal de los cultivos de secano y su relación con variables climáticas en Castilla La Mancha (Remote sensing–based monitoring of rainfed crops in Castilla-La Mancha). Ph.D. thesis, University of Valencia, 315 pp. [Available from A. Calera, IDR, E-02071 Albacete, Spain.].

  • Calera Belmonte, A., A. M. Jochum, A. Cuesta García, A. Montoro Rodríguez, and P. López Fuster, 2005: Irrigation management from space: Towards user-friendly products. Irrig. Drain. Syst, 19:337353.

    • Search Google Scholar
    • Export Citation
  • Cleugh, H. A., M. R. Raupach, P. R. Briggs, and P. A. Coppin, 2004: Regional-scale heat and water vapour fluxes in an agricultural landscape: An evaluation of CBL budget methods at OASIS. Bound.-Layer Meteor, 110:99137.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., 1983: A model for the Priestley-Taylor α. J. Climate Appl. Meteor, 22:572578.

  • de Bruin, H. A. R., Coauthors 1993: Surface fluxes measured during EFEDA. EFEDA Final Report, H. J. Bolle and B. Streckenbach, Eds., Institut für Meteorologie, Freie Universität Berlin, 141–227.

  • de Bruin, H. A. R., O. K. Hartogensis, R. G. Allen, and J. W. J. L. Kramer, 2005: Note on the Regional Advection Perturbations in an Irrigated Desert (RAPID) experiment. Theor. Appl. Climatol, 80:143152.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., J. Polcher, K. Laval, and M. Sabre, 2003: Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian peninsula. Geophys. Res. Lett, 30.1986, doi:10.1029/2003GL018024.

    • Search Google Scholar
    • Export Citation
  • Gao, W., R. L. Coulter, B. M. Lesht, J. Qiu, and M. L. Wesely, 1998: Estimating clear-sky regional surface fluxes in the Southern Great Plains Atmospheric Radiation Measurement site with ground measurements and satellite observations. J. Appl. Meteor, 37:522.

    • Search Google Scholar
    • Export Citation
  • González-Piqueras, J., 2006: Evapotranspiración de la cubierta vegetal mediante la determinación del coeficiente de cultivo por teledetección. Extensión a escala regional: Acuífero 08.29 Mancha Oriental (Canopy evapotranspiration from remote sensing of crop coefficient: Extension to the regional scale and application to the aquifer 08.29 Mancha Oriental). Ph.D. thesis, Universitat de València, 240 pp. [Available from J. González, IDR, E-02071 Albacete, Spain.].

  • Gottschalk, L., Coauthors 1999: Scale aggregation—Comparison of flux estimates from NOPEX. Agric. For. Meteor, 98–99:103119.

  • Grunwald, J., N. Kalthoff, U. Corsmeier, and F. Fiedler, 1996: Comparison of areally averaged turbulent fluxes over non-homogeneous terrain. Bound.-Layer Meteor, 77:105134.

    • Search Google Scholar
    • Export Citation
  • Grunwald, J., N. Kalthoff, F. Fiedler, and U. Corsmeier, 1998: Application of different flight strategies to determine areally averaged turbulent fluxes. Contrib. Atmos. Phys, 71:283302.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., D. P. Lettenmaier, and T. Skaugen, 2006: Effects of irrigation on the water and energy balances of the Colorado and Mekong River basins. J. Hydrol, in press.

    • Search Google Scholar
    • Export Citation
  • Halldin, S., S. E. Gryning, L. Gottschalk, A. M. Jochum, L-C. Lundin, and A. A. van de Griend, 1999: Energy, water and carbon exchange in a boreal forest landscape—NOPEX experiences. Agric. For. Meteor, 98–99:529.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M. and M. Ek, 1996: Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY. J. Appl. Meteor, 35:202213.

    • Search Google Scholar
    • Export Citation
  • Jochum, A. M., 1993a: Estimation of area-averaged fluxes from aircraft measurements using different observational techniques. Proc. Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 469–472.

  • Jochum, A. M., 1993b: Evaporation and energy fluxes during EFEDA: Horizontal variability and area averaging. IAHS Publ, 212:373380.

  • Jochum, A. M., P. Kabat, and R. Hutjes, 2000: The role of remote sensing in land-surface experiments within BAHC and ISLSCP. Observing Land from Space: Science, Customers and Technology, M. Verstraete, M. Menenti, and J. Peltoniemi, Eds., Kluwer Academic, 91–103.

    • Search Google Scholar
    • Export Citation
  • Jochum, A. M., E. Rodríguez Camino, H. A. R. de Bruin, and A. A. M. Holtslag, 2004: Performance of HIRLAM in a semi-arid heterogeneous region: Evaluation of the land-surface and boundary layer description using EFEDA observations. Mon. Wea. Rev, 132:27452760.

    • Search Google Scholar
    • Export Citation
  • Jochum, A. M., A. Calera Belmonte, A. Montoro Rodríguez, P. López Fuster, and A. Cuesta García, 2005: Servicio de Asesoramiento de Riegos Asistido por Satélite: Operación en tiempo real y evaluación por usuarios (Space-assisted Irrigation Advisory Service: Real-time operations and evaluation with users). Proc. XXIII Congreso Nacional de Riegos, Elche, Spain, Asociación Española de Riegos y Drenaje, 58–59.

  • Leuning, R., Coauthors 2004: Spatial and temporal variations in fluxes of energy, water vapour and carbon dioxide during OASIS 1994 and 1995. Bound.-Layer Meteor, 110:338.

    • Search Google Scholar
    • Export Citation
  • Linder, W., J. Noilhan, M. Berger, K. Bluemel, E. Blyth, and G. Boulet, 1996: Intercomparison of surface schemes using EFEDA flux data. Météo France CNRM Rep. 39, 86 pp.

  • Mahrt, L., D. Vickers, J. Sun, and J. H. McCaughey, 2001: Calculation of area-averaged fluxes: Application to BOREAS. J. Appl. Meteor, 40:915920.

    • Search Google Scholar
    • Export Citation
  • Mann, J. and D. H. Lenschow, 1994: Errors in airborne flux measurements. J. Geophys. Res, 99:1451914526.

  • Martínez, C. and A. Calera, 2001: Irrigated crop area estimation from thematic map using Landsat TM imagery in La Mancha (Spain). Photogram. Eng. Remote Sens, 67:11771184.

    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G. and T. W. Spriggs, 1986: A mixed-layer model for regional evaporation. Bound.-Layer Meteor, 34:243262.

  • Michaud, J. D. and W. J. Shuttleworth, 1997: Executive summary of the Tucson Aggregation Workshop. J. Hydrol, 190:176181.

  • Michels, B. I. and A. M. Jochum, 1995: Heat and moisture flux profiles in a region with inhomogeneous surface evaporation. J. Hydrol, 166:383407.

    • Search Google Scholar
    • Export Citation
  • Montoro, A., R. López Urrea, and P. López Fuster, 2004: El Servicio de Asesoramiento de Riegos de Albacete: Dieciseis años de experiencia (The Irrigation Advisory Service of Albacete: Sixteen years of experience). Proc. XXII Congreso Nacional de Riegos, Logroño, Spain, Asociación Española de Riegos y Drenaje, 75–76.

  • Noilhan, J., 1996: Desertification processes in the Mediterranean area and their interlinks with global climate: Surface processes and atmospheric modelling. Final Report of the EFEDA Group 6, EU Contract EV5V-CT93-0269, 165 pp.

  • Noilhan, J. and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev, 117:536549.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., P. Lacarrère, A. J. Dolman, and E. M. Blyth, 1997: Defining area-average parameters in meteorological models for land surface with mesoscale heterogeneity. J. Hydrol, 190:302316.

    • Search Google Scholar
    • Export Citation
  • Pelgrum, H. and W. G. M. Bastiaanssen, 1996: An intercomparison of techniques to determine the area-averaged latent heat flux from individual in situ observations: A remote sensing approach using the EFEDA data. Water Resour. Res, 32:27752786.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. and L. H. Davis, 2000: Regional flux estimation in a convective boundary layer using a conservation approach. J. Hydrometeor, 1:170182.

    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor, 67:293318.

  • Schüttemeyer, D., 2005: The surface energy balance over drying semi-arid terrain in West Africa. Ph.D. thesis, Wageningen University, 154 pp.

  • Sellers, P. J., Coauthors 1997: BOREAS in 1997: Experiment overview, scientific results and future directions. J. Geophys. Res, 102:2873128769.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: The soil-vegetation-atmosphere interface. Energy and Water Cycles in the Climate System, E. Raschke and D. Jakob, Eds., Proc. NATO ASI, Vol. 15, Springer-Verlag, 323–364.

  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci, 30:558567.

  • Tennekes, H. and A. G. M. Driedonks, 1981: Basic entrainment equations for the atmospheric boundary layer. Bound.-Layer Meteor, 20:515531.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., 1996: Sparse canopy parameterizations for meteorological models. Ph.D. thesis, Wageningen University, 272 pp.

  • Vickers, D. and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol, 14:512526.

    • Search Google Scholar
    • Export Citation
  • Wood, N. and P. J. Mason, 1991: The influence of static stability on the effective roughness for momentum and heat transfer. Quart. J. Roy. Meteor. Soc, 117:10251056.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., J. Evans, and R. B. Smith, 2005: MODIS-derived boundary conditions for a mesoscale climate model: Application to irrigated agriculture in the Euphrates Basin. Mon. Wea. Rev, 133:17271743.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1027 899 44
PDF Downloads 173 25 2