Measurements of Boundary Layer Profiles in an Urban Environment

Rod Frehlich University of Colorado, Boulder, Colorado

Search for other papers by Rod Frehlich in
Current site
Google Scholar
PubMed
Close
,
Yannick Meillier University of Colorado, Boulder, Colorado

Search for other papers by Yannick Meillier in
Current site
Google Scholar
PubMed
Close
,
Michael L. Jensen University of Colorado, Boulder, Colorado

Search for other papers by Michael L. Jensen in
Current site
Google Scholar
PubMed
Close
,
Ben Balsley University of Colorado, Boulder, Colorado

Search for other papers by Ben Balsley in
Current site
Google Scholar
PubMed
Close
, and
Robert Sharman Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Robert Sharman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Boundary layer profiles of mean temperature, velocity, and small-scale turbulence from in situ sensors, Doppler lidar, sodar, and rawinsondes are intercompared for an urban environment. A new Doppler lidar algorithm is presented to produce high-resolution profiles of small-scale velocity statistics. The lidar-derived profiles are robust and accurate even for challenging conditions such as stable boundary layers with a low-level jet, low turbulence, and low wind speed. Similar results are expected for other locations and convective conditions.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Rod Frehlich, Cooperative Institute for Research in Environmental Sciences (CIRES), Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Abstract

Boundary layer profiles of mean temperature, velocity, and small-scale turbulence from in situ sensors, Doppler lidar, sodar, and rawinsondes are intercompared for an urban environment. A new Doppler lidar algorithm is presented to produce high-resolution profiles of small-scale velocity statistics. The lidar-derived profiles are robust and accurate even for challenging conditions such as stable boundary layers with a low-level jet, low turbulence, and low wind speed. Similar results are expected for other locations and convective conditions.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Rod Frehlich, Cooperative Institute for Research in Environmental Sciences (CIRES), Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Save
  • Balsley, B. B., M. L. Jensen, and R. G. Frehlich, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor, 87:1–25.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., M. L. Jensen, R. G. Frehlich, Y. Meillier, and A. Muschinski, 2003: Extreme gradients in the nighttime boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci, 60:2496–2508.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, and Y. Meillier, 2006: High-resolution in situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmos. Sci, 63:1291–1307.

    • Search Google Scholar
    • Export Citation
  • Banakh, V. A. and I. N. Smalikho, 1997: Estimation of the turbulence energy dissipation rate from pulsed Doppler lidar data. Atmos. Oceanic Opt, 10:957–965.

    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., I. N. Smalikho, F. Kopp, and C. Werner, 1999: Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer. J. Atmos. Oceanic Technol, 16:1044–1061.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data: A critical discussion. Atmos. Environ, 31:3941–3953.

  • Browning, K. A. and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor, 7:105–113.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J. and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc, 105:811–827.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., 1995: Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. J. Atmos. Oceanic Technol, 12:85–95.

    • Search Google Scholar
    • Export Citation
  • Davies, F., C. G. Collier, G. N. Pearson, and K. E. Bozier, 2004: Doppler lidar measurements of turbulent structure function over an urban area. J. Atmos. Oceanic Technol, 21:753–761.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., A. M. Dabas, and P. H. Flamant, 2000: Remote measurement of turbulent wind spectra by heterodyne Doppler lidar techniques. J. Appl. Meteor, 39:2434–2451.

    • Search Google Scholar
    • Export Citation
  • Eaton, F. D., S. A. McLaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci, 30:75–88.

    • Search Google Scholar
    • Export Citation
  • Eberhard, W. L., R. E. Cupp, and K. R. Healy, 1989: Doppler lidar measurements of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol, 6:809–819.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1996: Simulation of coherent Doppler lidar performance in the weak signal regime. J. Atmos. Oceanic Technol, 13:646–658.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol, 14:54–75.

  • Frehlich, R. G., 2000: Simulation of coherent Doppler lidar performance for space-based platforms. J. Appl. Meteor, 39:245–262.

  • Frehlich, R. G., 2001: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol, 18:1628–1639.

  • Frehlich, R. G. and M. J. Yadlowsky, 1994: Performance of mean frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol, 11:1217–1230. Corrigendum. 12:445–446.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G. and L. Cornman, 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol, 19:355–366.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., S. Hannon, and S. Henderson, 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol, 11:1517–1528.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., S. Hannon, and S. Henderson, 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt, 36:3491–3499.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., S. Hannon, and S. Henderson, 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor, 86:233–256.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., L. Cornman, and R. Sharman, 2001: Simulation of three-dimensional turbulent velocity fields. J. Appl. Meteor, 40:246–258.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Y. Meillier, M. L. Jensen, and B. Balsley, 2003: Turbulence measurements with the CIRES tethered lifting system during CASES-99: Calibration and spectral analysis of temperature and velocity. J. Atmos. Sci, 60:2487–2495.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Y. Meillier, M. L. Jensen, and B. Balsley, 2004: Statistical description of small-scale turbulence in the low-level nocturnal jet. J. Atmos. Sci, 61:1079–1085.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., W. D. Neff, R. J. Zamora, and J. E. Gaynor, 1984: The fine structure of elevated refractive layers: Implications for over-the-horizon propagation and radar sounding systems. Radio Sci, 19:1523–1533.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers. Opt. Lett, 16:773–775.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens, 31:4–15.

    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1996: Corrections to Taylor's frozen turbulence approximation. Atmos. Res, 40:153–175.

  • Hinze, J. O., 1959: Turbulence: An Introduction to its Mechanism and Theory. McGraw-Hill, 586 pp.

  • Jacoby-Koaly, S., B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, 2002: Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements. Bound.-Layer Meteor, 103:361–389.

    • Search Google Scholar
    • Export Citation
  • Joffre, S., M. Kangas, M. Heikinheimo, and S. Kitaigorodskii, 2001: Variability of the stable and unstable atmospheric boundary layer height and its scales over the boreal forest. Bound.-Layer Meteor, 99:429–450.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C. and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford, 302 pp.

  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30:299–303.

    • Search Google Scholar
    • Export Citation
  • Kristensen, L., D. H. Lenschow, P. Kirkegaard, and M. Courtney, 1989: The spectral velocity tensor for homogeneous boundary-layer turbulence. Bound.-Layer Meteor, 47:149–193.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H. and L. Kristensen, 1988: Applications of dual aircraft formation flights. J. Atmos. Oceanic Technol, 5:715–726.

  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol, 11:661–673.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech, 388:259–288.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1989: Intermittency of atmospheric turbulence. J. Atmos. Sci, 46:79–95.

  • Mahrt, L. and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor, 105:351–363.

  • Mayor, S. D., D. H. Lenschow, R. L. Schwiesow, J. Mann, C. L. Frush, and M. K. Simon, 1997: Validation of NCAR 10.6-μm CO2 Doppler lidar radial velocity measurements and comparison with a 915-MHz profiler. J. Atmos. Oceanic Technol, 14:1110–1126.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S. and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2, MIT Press, 874 pp.

  • Muschinski, A., R. Frehlich, M. L. Jensen, R. Hugo, A. Hoff, F. Eaton, and B. Balsley, 2001: Fine-scale measurements of turbulence in the lower troposphere: An intercomparison between a kite-and balloon-borne, and a helicopter-borne measurement system. Bound.-Layer Meteor, 98:219–250.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D. and K. S. Gage, 1985: A climatology at atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci, 42:950–960.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K. and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci, 60:16–33.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor, 11:355–361.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., Coauthors 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc, 83:555–581.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1986: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 818 pp.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., 1969: High resolution tropospheric radar sounding. Radio Sci, 4:1261–1268.

  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc, 126:941–990.

  • Ruddick, B., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol, 17:1541–1555.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J. and R. M. Hardesty, 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans. Geosci. Remote Sens, 31:16–27.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J. and R. M. Hardesty, 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sens, 31:28–35.

    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., C-H. Moeng, and P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor, 95:1–30.

    • Search Google Scholar
    • Export Citation
  • Schmid, H. P. and T. R. Oke, 1990: A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Quart. J. Roy. Meteor. Soc, 116:965–988.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S. E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ, 34:1001–1027.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I. N., 1997: Accuracy of the turbulent energy dissipation rate estimation from the temporal spectrum of wind fluctuations. Atmos. Oceanic Opt, 10:559–563.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., 1988: Observation of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteor, 44:231–253.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1993: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 664 pp.

  • Sullivan, P. P., C-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci, 55:3042–3064.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, A132:476–490.

  • Tjernström, M., 1993: Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles. J. Appl. Meteor, 32:948–963.

    • Search Google Scholar
    • Export Citation
  • Waldteufel, P. and H. Corbin, 1979: On the analysis of single-Doppler radar data. J. Appl. Meteor, 18:532–542.

  • Weil, J. C., P. P. Sullivan, and C. Moeng, 2004: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci, 61:2877–2887.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C. and S. F. Clifford, 1977: Taylor's hypothesis and high-frequency turbulence spectra. J. Atmos. Sci, 34:922–929.

  • Zilitinkevich, S. and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor, 105:389–409.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1950 807 57
PDF Downloads 1048 165 19