Vertical Velocity and Buoyancy Characteristics of Coherent Echo Plumes in the Convective Boundary Layer, Detected by a Profiling Airborne Radar

Qun Miao University of Wyoming, Laramie, Wyoming

Search for other papers by Qun Miao in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
, and
Margaret LeMone National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Margaret LeMone in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Aircraft and airborne millimeter-wave radar observations are used to interpret the dynamics of radar echoes and radar-inferred updrafts within the well-developed, weakly sheared continental convective boundary layer. Vertically pointing radar reflectivity and Doppler velocity data collected above and below the aircraft, flying along fixed tracks in the central Great Plains during the International H2O Project (IHOP_2002), are used to define echo plumes and updraft plumes, respectively. Updraft plumes are generally narrower than echo plumes, but both types of plumes have the dynamical properties of buoyant eddies, especially at low levels. This buoyancy is driven both by temperature excess and water vapor excess over the ambient air. Plumes that are better defined in terms of reflectivity or updraft strength tend to be more buoyant.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Bart Geerts, Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. geerts@uwyo.edu

Abstract

Aircraft and airborne millimeter-wave radar observations are used to interpret the dynamics of radar echoes and radar-inferred updrafts within the well-developed, weakly sheared continental convective boundary layer. Vertically pointing radar reflectivity and Doppler velocity data collected above and below the aircraft, flying along fixed tracks in the central Great Plains during the International H2O Project (IHOP_2002), are used to define echo plumes and updraft plumes, respectively. Updraft plumes are generally narrower than echo plumes, but both types of plumes have the dynamical properties of buoyant eddies, especially at low levels. This buoyancy is driven both by temperature excess and water vapor excess over the ambient air. Plumes that are better defined in terms of reflectivity or updraft strength tend to be more buoyant.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Bart Geerts, Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. geerts@uwyo.edu

Save
  • Angevine W. M., S. K. Avery & G. L. Kok 1993 Virtual heat flux measurements from a boundary-layer profiler-RASS compared to aircraft measurements J. Appl. Meteor 32 1901 1907

    • Search Google Scholar
    • Export Citation
  • Berg L. K. 2002 A simple parameterization coupling the convective daytime boundary layer and fair-weather cumuli. Ph.D. dissertation, University of British Columbia, 157 pp

  • Cohn S. A. & W. M. Angevine 2000 Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars J. Appl. Meteor 39 1233 1247

    • Search Google Scholar
    • Export Citation
  • Cooper D. I., W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda & D. A. Poling 1996 High-resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations J. Atmos. Sci 53 2054 2075

    • Search Google Scholar
    • Export Citation
  • Crum T. D. & R. B. Stull 1987 Field measurements of the amount of surface layer air versus height in the entrainment zone J. Atmos. Sci 44 2743 2753

    • Search Google Scholar
    • Export Citation
  • Crum T. D., R. B. Stull & E. W. Eloranta 1987 Coincident lidar and aircraft observations of entrainment into thermals and mixed layers J. Climate Appl. Meteor 26 774 788

    • Search Google Scholar
    • Export Citation
  • Davis K. J., N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow & P. P. Sullivan 2000 An objective method for deriving atmospheric structure from airborne lidar observations J. Atmos. Oceanic Technol 17 1455 1468

    • Search Google Scholar
    • Export Citation
  • Doswell C. A. III & P. M. Markowski 2004 Is buoyancy a relative quantity? Mon. Wea. Rev 132 853 863

  • Doviak R. J. & M. Berger 1980 Turbulence and waves in the optically clear planetary boundary layer resolved by dual-Doppler radars Radio Sci 15 297 317

    • Search Google Scholar
    • Export Citation
  • Edwards B. 2004 Evaluating the convective atmospheric boundary layer by using surface station data. UCAR SOARS Program Summer Report, 407 pp. [Available from University Corporation for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307.]

  • Ferrare R. A., J. L. Schols, E. W. Eloranta & R. Coulter 1991 Lidar observations of banded convection during BLX83 J. Appl. Meteor 30 312 326

  • Geerts B. & Q. Miao 2005a The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer J. Atmos. Oceanic Technol 22 225 246

    • Search Google Scholar
    • Export Citation
  • Geerts B. & Q. Miao 2005b A simple numerical model of the flight behavior of small insects in the atmospheric convective boundary layer Environ. Entomol 34 353 360

    • Search Google Scholar
    • Export Citation
  • Gossard E. E. 1990 Radar research on the atmospheric boundary layer Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 477–533

  • Greenhut G. K. & S. J. S. Khalsa 1982 Updraft and downdraft events in the atmospheric boundary layer over the equatorial Pacific Ocean J. Atmos. Sci 39 1803 1818

    • Search Google Scholar
    • Export Citation
  • Hardy K. R. & H. Ottersten 1969 Radar investigations of convective patterns in the clear atmosphere J. Atmos. Sci 26 666 672

  • Kaimal J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey & C. J. Readings 1976 Turbulence structure in the convective boundary layer J. Atmos. Sci 33 2152 2169

    • Search Google Scholar
    • Export Citation
  • Khalsa S. J. S. & G. K. Greenhut 1985 Conditional sampling of updrafts and downdrafts in the marine atmospheric boundary layer J. Atmos. Sci 42 2550 2562

    • Search Google Scholar
    • Export Citation
  • Kiemle C., M. Kästner & C. Ehret 1995 The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA'91 campaign J. Atmos. Oceanic Technol 12 771 782

    • Search Google Scholar
    • Export Citation
  • Konrad T. G. 1970 The dynamics of the convective process in clear air as seen by radar J. Atmos. Sci 27 1138 1147

  • LeMone M. A. 1973 The structure and dynamics of horizontal roll vortices in the planetary boundary layer J. Atmos. Sci 30 1077 1091

  • LeMone M. A. Coauthors 2000 Land–atmosphere interaction research, early results, and opportunities in the Walnut River watershed in southeast Kansas: CASES and ABLE Bull. Amer. Meteor. Soc 81 757 780

    • Search Google Scholar
    • Export Citation
  • LeMone M. A., R. L. Grossman, F. Chen, K. Ikeda & D. Yates 2003 Choosing the averaging interval for comparison of observed and modeled fluxes along aircraft transects over a heterogeneous surface J. Hydrometeor 4 179 195

    • Search Google Scholar
    • Export Citation
  • Lenschow D. H. 1972 The measurement of air velocity and temperature using the NCAR Buffalo aircraft measuring system. NCAR Tech. Note NCAR-TN, EDD-75, 39 pp

  • Lenschow D. H. & P. L. Stephens 1980 The role of thermals in the convective boundary layer Bound.-Layer Meteor 19 509 532

  • Lenschow D. H., J. C. Wyngaard & W. T. Pennell 1980 Mean field and second moment budgets in a baroclinic, convective boundary layer J. Atmos. Sci 37 1313 1326

    • Search Google Scholar
    • Export Citation
  • Leon D., G. Vali & M. Lothon 2006 Dual-Doppler analysis in a single plane from an airborne platform J. Atmos. Oceanic Technol 23 3 22

  • Lohou F., B. Campistron, A. Druilhet, P. Foster & J. P. Pages 1998a Turbulence and coherent organizations in the atmospheric boundary layer: A radar-aircraft experimental approach Bound.-Layer Meteor 86 147 179

    • Search Google Scholar
    • Export Citation
  • Lohou F., A. Druilhet & B. Campistron 1998b Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ observations Bound.-Layer Meteor 89 407 444

    • Search Google Scholar
    • Export Citation
  • Manton M. J. 1977 On the structure of convection Bound.-Layer Meteor 12 491 503

  • Marsik F. J., K. W. Fischer, T. D. McDonald & P. J. Samson 1995 Comparison of methods for estimating mixing height used during the 1992 Atlanta field intensive J. Appl. Meteor 34 1802 1814

    • Search Google Scholar
    • Export Citation
  • Mayor S. D., G. J. Tripoli & E. W. Eloranta 2003 Evaluating large-eddy simulations using volume imaging lidar data Mon. Wea. Rev 131 1428 1452

  • Melling H. & R. List 1980 Characteristics of vertical velocity fluctuations in a convective urban boundary layer J. Appl. Meteor 19 1184 1195

  • Nicholls S. & M. A. LeMone 1980 The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds J. Atmos. Sci 37 2051 2067

    • Search Google Scholar
    • Export Citation
  • Pazmany A., R. McIntosh, R. Kelly & G. Vali 1994 An airborne 95 GHz dual-polarized radar for cloud studies IEEE Trans. Geosci. Remote Sens 32 731 739

  • Readings C. J., E. Golton & K. A. Browning 1973 Fine-scale structure and mixing within an inversion Bound.-Layer Meteor 4 275 287

  • Reinking R. F., R. J. Doviak & R. O. Gilmer 1981 Clear-air roll vortices and turbulent motions as detected with an airborne gust probe and dual-Doppler radar J. Appl. Meteor 20 678 685

    • Search Google Scholar
    • Export Citation
  • Russell R. W. & J. W. Wilson 1997 Radar-observed “fine lines” in the optically clear boundary layer: Reflectivity contributions from aerial plankton and its predators Bound.-Layer Meteor 82 235 262

    • Search Google Scholar
    • Export Citation
  • Schumann U. & C. Moeng 1991 Plume fluxes in clear and cloudy convective boundary layers J. Atmos. Sci 48 1746 1757

  • Scorer R. S. 1957 Experiments on convection of isolated masses of buoyant fluid J. Fluid Mech 2 583 594

  • Stull R. B. 1988 An Introduction to Boundary Layer Meteorology Kluwer Academic, 666 pp

  • Wang S. & B. Stevens 2000 Top-hat representation of turbulence statistics in cloud-topped boundary layers: A large eddy simulation study J. Atmos. Sci 57 423 441

    • Search Google Scholar
    • Export Citation
  • Weckwerth T. Coauthors 2004 An overview of the International H2O Project (IHOP_2002) and some preliminary highlights Bull. Amer. Meteor. Soc 85 253 277

    • Search Google Scholar
    • Export Citation
  • White A. B., C. J. Senff & R. M. Banta 1999 A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar J. Atmos. Oceanic Technol 16 584 590

    • Search Google Scholar
    • Export Citation
  • Wilson J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller & S. K. Krueger 1992 The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study Mon. Wea. Rev 120 1785 1815

    • Search Google Scholar
    • Export Citation
  • Wilson J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto & R. W. Russell 1994 Boundary-layer clear-air radar echoes: Origin of echoes and accuracy of derived winds J. Atmos. Oceanic Technol 11 1184 1206

    • Search Google Scholar
    • Export Citation
  • Xu M. & T. Gal-Chen 1993 A study of the convective boundary-layer dynamics using single Doppler radar measurements J. Atmos. Sci 50 3641 3662

  • Young G. S. 1988 Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment J. Atmos. Sci 45 727 735

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 831 419 42
PDF Downloads 285 34 3