• Bink, N. J., 1996: The structure of the atmospheric surface layer subject to local advection. Ph.D. dissertation, Wageningen Agricultural University, 206 pp.

  • Bouvet, T., and J. D. Wilson, 2006: An approximate analytical solution for the deposition of heavy particles released from an elevated line source. Bound.-Layer Meteor., 119 , 118.

    • Search Google Scholar
    • Export Citation
  • Brusasca, G., G. Tinarelli, and D. Anfossi, 1992: Particle model simulation of diffusion in low wind speed and stable conditions. Atmos. Environ., 26 , 707723.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1963: Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci., 20 , 115119.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1963: Turbulent diffusion of heavy particles in atmosphere. J. Atmos. Sci., 20 , 201208.

  • Du, S., 1997: Universality of the Lagrangian velocity structure function constant (C0) across different kinds of turbulence. Bound.-Layer Meteor., 83 , 207219.

    • Search Google Scholar
    • Export Citation
  • Flesch, T. K., and J. D. Wilson, 1992: A two-dimensional trajectory-simulation model for non-Gaussian, inhomogeneous turbulence within plant canopies. Bound.-Layer Meteor., 61 , 349374.

    • Search Google Scholar
    • Export Citation
  • Hage, K. D., 1961: On the dispersion of large particles from a 15-m source in the atmosphere. J. Meteor., 18 , 534539.

  • Hinze, J. O., 1975: Turbulence. 2d ed. McGraw-Hill, 790 pp.

  • Jarosz, N., B. Loubet, B. Durand, A. McCartney, X. Foueillassar, and L. Huber, 2003: Field measurements of airborne concentration and deposition rate of maize pollen. Agric. For. Meteor., 119 , 3751.

    • Search Google Scholar
    • Export Citation
  • Jarosz, N., B. Loubet, and L. Huber, 2004: Modelling airborne concentration and deposition rate of maize pollen. Atmos. Environ., 38 , 55555566.

    • Search Google Scholar
    • Export Citation
  • Klein, E. K., X. Foueillassar, P. H. Gouyon, and C. Laredo, 2003: Corn pollen dispersal: Quasi-mechanistic models and field experiments. Ecol. Monogr., 73 , 131150.

    • Search Google Scholar
    • Export Citation
  • Kroon, L. J. M., and H. A. R. de Bruin, 1993: Atmosphere–vegetation interaction in local advection conditions: Effect of lower boundary conditions. Agric. For. Meteor., 64 , 128.

    • Search Google Scholar
    • Export Citation
  • Leuzzi, G., and P. Monti, 1998: Particle trajectory simulation of dispersion around a building. Atmos. Environ., 32 , 203214.

  • Li, F. R., L. Y. Zhao, T. H. Hua Zhang, T. H. Zhang, and Y. Shirato, 2004: Wind erosion and airborne dust deposition in farmland during spring in the Horqin Sandy Land of eastern Inner Mongolia, China. Soil Tillage Res., 75 , 121130.

    • Search Google Scholar
    • Export Citation
  • Loubet, B., 2000: Modélisation du dépôt sec d’ammoniac atmosphérique à proximité des sources (Modeling of atmospheric ammonia dry deposition near the source). Ph.D. dissertation, Université Paul Sabatier, 360 pp. [Available online at http://tel.ccsd.cnrs.fr/documents/archives0/00/00/32/50/tel-00003250-00/tel-00003250.pdf.].

  • Pinker, R. A., and M. V. Herbert, 1967: Pressure loss associated with compressible flow through square-mesh wire gauzes. J. Mech. Eng. Sci., 9 , 1123.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 2002: Diffusion of heavy particles in a turbulent flow. Environmental Mechanics: Water, Mass and Energy Transfer in the Biosphere, Geophys. Monogr., Vol. 129, Amer. Geophys. Union, 301–316.

  • Raupach, M. R., N. Woods, G. Dorr, J. F. Leys, and H. A. Cleugh, 2001: The entrapment of particles by windbreaks. Atmos. Environ., 35 , 33733383.

    • Search Google Scholar
    • Export Citation
  • Reynolds, A. M., 2000: On the formulation of Lagrangian stochastic models for heavy-particle trajectories. J. Colloid Interface Sci., 232 , 260268.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1962: An approximate calculation of the Lagrangian auto-correlation coefficient for stationary homogeneous turbulence. Appl. Sci. Res., 11A , 245255.

    • Search Google Scholar
    • Export Citation
  • Sato, Y., and K. Yamamoto, 1987: Lagrangian measurement of fluid-particle motion in an isotropic turbulent field. J. Fluid Mech., 175 , 183199.

    • Search Google Scholar
    • Export Citation
  • Sawford, B. L., and F. M. Guest, 1991: Lagrangian statistical simulation of the turbulent motion of heavy particles. Bound.-Layer Meteor., 54 , 147166.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180 , 529556.

    • Search Google Scholar
    • Export Citation
  • Walker, E. R., 1965: A particulate diffusion experiment. J. Appl. Meteor., 4 , 614621.

  • Wang, L. P., D. E. Stock, and B. K. Lamb, 1988: On the relationship between Lagrangian and Eulerian scales for Kraichnan’s Gaussian random velocity field. Preprints, Eighth Symp. on Turbulence and Diffusion, San Diego, CA, Amer. Meteor. Soc., 92–95.

  • Wells, M. R., 1982: The effects of crossing trajectories on the diffusion of particles in a turbulent fluid. Ph.D. thesis, Washington State University.

  • Wells, M. R., and D. E. Stock, 1983: The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J. Fluid Mech., 136 , 3162.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2000: Trajectory models for heavy particles in atmospheric turbulence: Comparison with observations. J. Appl. Meteor., 39 , 18941912.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2004: Oblique, stratified winds about a shelter fence. Part II: Comparison of measurements with numerical models. J. Appl. Meteor., 43 , 13921409.

    • Search Google Scholar
    • Export Citation
  • Woods, N., I. P. Craig, G. Dorr, and B. Young, 2001: Spray drift of pesticides arising from aerial application in cotton. J. Environ. Qual., 30 , 697701.

    • Search Google Scholar
    • Export Citation
  • Yudine, M. I., 1959: Physical considerations on heavy particle diffusion. Advances in Geophysics, Vol. 6, Academic Press, 185–191.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 32 5
PDF Downloads 37 23 3

Observations and Modeling of Heavy Particle Deposition in a Windbreak Flow

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada, and Unité Mixte de Recherche “Environnement et Grandes Cultures,” INAPG INRA, Thiverval-Grignon, France
  • | 2 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
  • | 3 Unité Mixte de Recherche “Environnement et Grandes Cultures,” INAPG INRA, Thiverval-Grignon, France
Restricted access

Abstract

This paper presents new observations of deposition of heavy particles (glass beads of gravitational settling velocity 8.7 cm s−1) within an undisturbed flow and within a flow disturbed by a porous windbreak fence. These data are then used to diagnose the capability of a Lagrangian stochastic (LS) particle trajectory model, which simulates heavy particle dispersion. The model is based on existing parameterizations and is coupled to a wind model based on a Reynolds stress turbulence closure that provides computed fields of wind statistics. The deposition rates, as simulated by the model, match the observation within E = 30% of accuracy, with E being the root-mean-square error normalized by the peak value on the deposition swath. These results suggest that the LS model handles properly the heterogeneities of the flow and that the heuristic adjustments made to account for the inertia of heavy particles are useful approximations. The model consequently proves to be a valuable tool to investigate the patterns of dispersion about an obstacle.

Corresponding author address: Thomas Bouvet, Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada. Email: tbouvet@ualberta.ca

Abstract

This paper presents new observations of deposition of heavy particles (glass beads of gravitational settling velocity 8.7 cm s−1) within an undisturbed flow and within a flow disturbed by a porous windbreak fence. These data are then used to diagnose the capability of a Lagrangian stochastic (LS) particle trajectory model, which simulates heavy particle dispersion. The model is based on existing parameterizations and is coupled to a wind model based on a Reynolds stress turbulence closure that provides computed fields of wind statistics. The deposition rates, as simulated by the model, match the observation within E = 30% of accuracy, with E being the root-mean-square error normalized by the peak value on the deposition swath. These results suggest that the LS model handles properly the heterogeneities of the flow and that the heuristic adjustments made to account for the inertia of heavy particles are useful approximations. The model consequently proves to be a valuable tool to investigate the patterns of dispersion about an obstacle.

Corresponding author address: Thomas Bouvet, Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada. Email: tbouvet@ualberta.ca

Save