• Angevine, W. M., A. W. Grimsdell, A. McKeen, and J. M. Warnock, 1998: Entrainment results from the Flatland boundary layer experiments. J. Geophys. Res., 103 , 1368913701.

    • Search Google Scholar
    • Export Citation
  • Artaz, M. A., and J. C. André, 1980: Similarity studies of entrainment in convective mixed layers. Bound.-Layer Meteor., 19 , 5166.

  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Betts, A. K., 1974: Reply to comment on the paper “Non-precipitating cumulus convection and its parameterization.”. Quart. J. Roy. Meteor. Soc., 100 , 469471.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. L. Desjardins, and J. I. MacPherson, 1992: Budget analysis of the boundary layer grid flights during FIFE 1987. J. Geophys. Res., 97 , 1853318546.

    • Search Google Scholar
    • Export Citation
  • Boers, R., E. W. Eloranta, and R. L. Coulter, 1984: Lidar parameterizations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23 , 247266.

    • Search Google Scholar
    • Export Citation
  • Carson, D. J., 1973: The development of a dry inversion-capped convectively unstable boundary layer. Quart. J. Roy. Meteor. Soc., 99 , 450467.

    • Search Google Scholar
    • Export Citation
  • Cattle, H., and K. J. Weston, 1975: Budget studies of heat flux profiles in the convective boundary layer over land. Quart. J. Roy. Meteor. Soc., 101 , 353363.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105 , 801827.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. B. Olson, and J. S. Tongue, 2003: Multiseason verification of the MM5. Part I: Comparison with the Eta Model over the central and eastern United States and impact of MM5 resolution. Wea. Forecasting, 18 , 431457.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R., and E. Fedorovich, 2004: Numerical models of entrainment into sheared convective boundary layers evaluated through large eddy simulations. Preprints, 16th Symp. on Boundary Layer and Turbulence, Portland, ME, Amer. Meteor. Soc., CD-ROM, 5.6.

  • Cox, R., B. L. Bauer, and T. Smith, 1998: A mesoscale model intercomparison. Bull. Amer. Meteor. Soc., 79 , 265283.

  • Cuijpers, J. W. M., and P. G. Duynkerke, 1993: Large eddy simulation of trade wind cumulus clouds. J. Atmos. Sci., 50 , 38943908.

  • Cuijpers, J. W. M., and A. A. M. Holtslag, 1998: Impact of skewness and nonlocal effect on scalar and buoyancy fluxes in convective boundary layers. J. Atmos. Sci., 55 , 151162.

    • Search Google Scholar
    • Export Citation
  • Culf, A. D., 1992: An application of simple models to Sahelian convective boundary-layer growth. Bound.-Layer Meteor., 58 , 118.

  • Deardorff, J. W., G. E. Willis, and B. H. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech., 100 , 4164.

    • Search Google Scholar
    • Export Citation
  • de Arellano, J. V-G., B. Gioli, F. Miglietta, H. J. J. Jonker, H. K. Baltink, R. W. A. Hutjes, and A. A. M. Holtslag, 2004: Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res., 109 .D18110, doi:10.1029/2004JD004725.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1981: Dynamics of the well-mixed atmospheric boundary layer. Ph.D. dissertation, Vrije Universiteit te Amsterdam, 189 pp.

  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23 , 283306.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., and H. Tennekes, 1984: Entrainment effects in the well-mixed atmospheric boundary layer. Bound.-Layer Meteor., 30 , 75105.

    • Search Google Scholar
    • Export Citation
  • Dubosclard, G., 1980: A comparison between observed values and predicted values for the entrainment coefficient in the planetary boundary layer. Bound.-Layer Meteor., 18 , 473483.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., 1984: Wind shear enhancement of entrainment and refractive index structure parameter at the top of a turbulent mixed layer. J. Atmos. Sci., 41 , 34723484.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., 1995: Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework. J. Appl. Meteor., 34 , 19161928.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., F. T. M. Nieuwstadt, and R. Kaiser, 2001: Numerical and laboratory study of a horizontally evolving convective boundary layer. Part II: Effects of elevated wind shear and surface roughness. J. Atmos. Sci., 58 , 546560.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., R. Conzemius, and D. Mironov, 2004a: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci., 61 , 281295.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and Coauthors, 2004b: Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. Preprints, 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., CD-ROM, P4.7.

  • Flamant, C., and J. Pelon, 1996: Atmospheric boundary-layer structure over the Mediterranean during a Tramontane event. Quart. J. Roy. Meteor. Soc., 122 , 17411778.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteor., 83 , 247284.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., J. Pelon, B. Brashers, and R. A. Brown, 1999: Evidence of a mixed-layer dynamics contribution to the entrainment process. Bound.-Layer Meteor., 93 , 4773.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garratt, J. R., J. C. Wyngaard, and R. J. Francey, 1982: Winds in the atmospheric boundary layer—Prediction and observation. J. Atmos. Sci., 39 , 13071316.

    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and E. Batchvarova, 1990: Analytical model for the growth of the coastal internal boundary layer during onshore flow. Quart. J. Roy. Meteor. Soc., 116 , 187203.

    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and E. Batchvarova, 1994: Parameterization of the depth of the entrainment zone above the daytime mixed layer. Quart. J. Roy. Meteor. Soc., 120 , 4758.

    • Search Google Scholar
    • Export Citation
  • Källstrand, B., and A-S. Smedman, 1997: A case study of the near-neutral coastal internal boundary-layer growth: Aircraft measurements compared with different model estimates. Bound.-Layer Meteor., 85 , 133.

    • Search Google Scholar
    • Export Citation
  • Kim, S-W., S-U. Park, and C-H. Moeng, 2003: Entrainment processes in the convective boundary layer with varying wind shear. Bound.-Layer Meteor., 108 , 221245.

    • Search Google Scholar
    • Export Citation
  • Kim, S-W., S-U. Park, D. Pino, and J. Vilà-Guerau de Arellano, 2006: Entrainment parameterization in a sheared convective boundary layer by using a first-order jump model. Bound.-Layer Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Kraus, H., and E. Schaller, 1978: A note on the closure in Lilly-type inversion models. Tellus, 30 , 284288.

  • Lilly, D. K., 1968: Models of cloud-topped mixed layer under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • Lilly, D. K., 2002a: Entrainment into mixed layers. Part I: Sharp-edged and smoothed tops. J. Atmos. Sci., 59 , 33403352.

  • Lilly, D. K., 2002b: Entrainment into mixed layers. Part II: A new closure. J. Atmos. Sci., 59 , 33533361.

  • Lock, A. P., and M. K. MacVean, 1999: The parametrization of entrainment driven by surface heating and cloud-top cooling. Quart. J. Roy. Meteor. Soc., 125 , 271299.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. H. Lenschow, 1976: Growth dynamics of the convectively mixed layer. J. Atmos. Sci., 33 , 4151.

  • Manins, P. C., and J. S. Turner, 1978: The relation between flux ratio and the energy ratio in convectively mixed layers. Quart. J. Roy. Meteor. Soc., 104 , 3944.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and S. E. Belcher, 2001: A mixed-layer model of the well-mixed stratocumulus-topped boundary layer. Bound.-Layer Meteor., 100 , 171187.

    • Search Google Scholar
    • Export Citation
  • Pino, D., J. Vilà-Guerau de Arellano, and P. G. Duynkerke, 2003: The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci., 60 , 19131926.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1984: Buoyant production and consumption of turbulent kinetic energy in cloud-topped mixed layers. J. Atmos. Sci., 41 , 402413.

    • Search Google Scholar
    • Export Citation
  • Rayment, R., and C. J. Readings, 1974: Case study of the structure and energetics of an inversion. Quart. J. Roy. Meteor. Soc., 100 , 221233.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2004: Large-eddy simulations of the baroclinic mixed layer. Bound.-Layer Meteor., 112 , 5780.

  • Stage, S., and J. Bussinger, 1981: A model for entrainment into a cloud-topped marine boundary layer. Part II: Discussion of model behavior and comparison with other models. J. Atmos. Sci., 38 , 22302242.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1976a: The energetics of entrainment across a density interface. J. Atmos. Sci., 33 , 12601267.

  • Stull, R. B., 1976b: Mixed-layer depth model based on turbulent energetics. J. Atmos. Sci., 33 , 12681278.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

  • Sullivan, P. P., C-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55 , 30423064.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30 , 558567.

  • Tennekes, H., and A. G. M. Driedonks, 1981: Basic entrainment equations for the atmospheric boundary layer. Bound.-Layer Meteor., 20 , 515531.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Entrainment parameterization in convective boundary layers. J. Atmos. Sci., 56 , 813828.

    • Search Google Scholar
    • Export Citation
  • Villani, M. G., A. Maurizi, and F. Tampieri, 2005: Discussion and applications of slab models of the convective boundary layer based on turbulent kinetic energy budget parameterizations. Bound.-Layer Meteor., 114 , 539556.

    • Search Google Scholar
    • Export Citation
  • Vinuesa, J-F., and J. Vilà-Guerau de Arellano, 2005: Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer. Atmos. Environ., 39 , 445461.

    • Search Google Scholar
    • Export Citation
  • Zeman, O., and H. Tennekes, 1977: Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. J. Atmos. Sci., 34 , 111123.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1975: Comments on “A model for the dynamics of the inversion above a convective boundary layer.”. J. Atmos. Sci., 32 , 991992.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1991: Turbulent Penetrative Convection. Avebury Technical, 180 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 78 4
PDF Downloads 57 37 4

Representing Sheared Convective Boundary Layer by Zeroth- and First-Order-Jump Mixed-Layer Models: Large-Eddy Simulation Verification

View More View Less
  • 1 Applied Physics Department, Technical University of Catalonia, and Institute for Space Studies of Catalonia (IEEC/CSIC), Barcelona, Spain
  • | 2 Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The simpler of the two is based on a sharp discontinuity at the inversion (zeroth-order jump), whereas the second one prescribes a finite depth of the inversion zone (first-order jump). Large-eddy simulation data are used to provide the initial conditions for the mixed-layer models, and to verify their results. Two different atmospheric boundary layers with different stratification in the free atmosphere are analyzed. It is shown that, despite the simplicity of the zeroth-order-jump model, it provides similar results to the first-order-jump model and can reproduce the evolution of the mixed-layer variables obtained by the large-eddy simulations in sheared convective boundary layers. The mixed-layer model with both closures compares better with the large-eddy simulation results in the atmospheric boundary layer characterized by a moderate wind shear and a weak temperature inversion. These results can be used to represent the flux of momentum, heat, and other scalars at the entrainment zone in general circulation or chemistry transport models.

* Current affiliation: Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

+ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: David Pino, Applied Physics Department, Technical University of Catalonia, Avd. del Canal Olímpic s/n, 08860 Castelldefels, Spain. Email: david@fa.upc.edu

Abstract

Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The simpler of the two is based on a sharp discontinuity at the inversion (zeroth-order jump), whereas the second one prescribes a finite depth of the inversion zone (first-order jump). Large-eddy simulation data are used to provide the initial conditions for the mixed-layer models, and to verify their results. Two different atmospheric boundary layers with different stratification in the free atmosphere are analyzed. It is shown that, despite the simplicity of the zeroth-order-jump model, it provides similar results to the first-order-jump model and can reproduce the evolution of the mixed-layer variables obtained by the large-eddy simulations in sheared convective boundary layers. The mixed-layer model with both closures compares better with the large-eddy simulation results in the atmospheric boundary layer characterized by a moderate wind shear and a weak temperature inversion. These results can be used to represent the flux of momentum, heat, and other scalars at the entrainment zone in general circulation or chemistry transport models.

* Current affiliation: Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

+ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: David Pino, Applied Physics Department, Technical University of Catalonia, Avd. del Canal Olímpic s/n, 08860 Castelldefels, Spain. Email: david@fa.upc.edu

Save