The Characterization of Ice Cloud Properties from Doppler Radar Measurements

Julien Delanoë Centre d’Etude des Environnements Terrestre et Planétaires, Vélizy-Villacoublay, France, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Julien Delanoë in
Current site
Google Scholar
PubMed
Close
,
A. Protat Centre d’Etude des Environnements Terrestre et Planétaires, Vélizy-Villacoublay, France

Search for other papers by A. Protat in
Current site
Google Scholar
PubMed
Close
,
D. Bouniol Centre d’Etude des Environnements Terrestre et Planétaires, Vélizy-Villacoublay, France

Search for other papers by D. Bouniol in
Current site
Google Scholar
PubMed
Close
,
Andrew Heymsfield National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Andrew Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Aaron Bansemer National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aaron Bansemer in
Current site
Google Scholar
PubMed
Close
, and
Philip Brown Met Office, Exeter, United Kingdom

Search for other papers by Philip Brown in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The paper describes an original method that is complementary to the radar–lidar algorithm method to characterize ice cloud properties. The method makes use of two measurements from a Doppler cloud radar (35 or 95 GHz), namely, the radar reflectivity and the Doppler velocity, to recover the effective radius of crystals, the terminal fall velocity of hydrometeors, the ice water content, and the visible extinction from which the optical depth can be estimated. This radar method relies on the concept of scaling the ice particle size distribution. An error analysis using an extensive in situ airborne microphysical database shows that the expected errors on ice water content and extinction are around 30%–40% and 60%, respectively, including both a calibration error and a bias on the terminal fall velocity of the particles, which all translate into errors in the retrieval of the density–diameter and area–diameter relationships. Comparisons with the radar–lidar method in areas sampled by the two instruments also demonstrate the accuracy of this new method for retrieval of the cloud properties, with a roughly unbiased estimate of all cloud properties with respect to the radar–lidar method. This method is being systematically applied to the cloud radar measurements collected over the three-instrumented sites of the European Cloudnet project to validate the representation of ice clouds in numerical weather prediction models and to build a cloud climatology.

Corresponding author address: Julien Delanoë, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: j.m.e.delanoe@reading.ac.uk

Abstract

The paper describes an original method that is complementary to the radar–lidar algorithm method to characterize ice cloud properties. The method makes use of two measurements from a Doppler cloud radar (35 or 95 GHz), namely, the radar reflectivity and the Doppler velocity, to recover the effective radius of crystals, the terminal fall velocity of hydrometeors, the ice water content, and the visible extinction from which the optical depth can be estimated. This radar method relies on the concept of scaling the ice particle size distribution. An error analysis using an extensive in situ airborne microphysical database shows that the expected errors on ice water content and extinction are around 30%–40% and 60%, respectively, including both a calibration error and a bias on the terminal fall velocity of the particles, which all translate into errors in the retrieval of the density–diameter and area–diameter relationships. Comparisons with the radar–lidar method in areas sampled by the two instruments also demonstrate the accuracy of this new method for retrieval of the cloud properties, with a roughly unbiased estimate of all cloud properties with respect to the radar–lidar method. This method is being systematically applied to the cloud radar measurements collected over the three-instrumented sites of the European Cloudnet project to validate the representation of ice clouds in numerical weather prediction models and to build a cloud climatology.

Corresponding author address: Julien Delanoë, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: j.m.e.delanoe@reading.ac.uk

Save
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water evaporator. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110 .D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations, 1, Theory and examples. J. Geophys. Res., 106 , 2742527448.

    • Search Google Scholar
    • Export Citation
  • European Space Agency, 2004: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. The Six Candidate Earth Explorer Missions, ESA/ESTEC Rep. ESA SP-1279(1), 60 pp.

  • Francis, P. N., A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, and Z. Sun, 1994: An observational and theoretical study of the radiative properties of cirrus: Some results from Ice’89. Quart. J. Roy. Meteor. Soc., 120 , 809848.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., D. P. Donovan, C. Tinel, M. E. Brooks, D. Bouniol, A. J. Illingworth, and J. P. V. Poiares Baptista, 2005: Independent evaluation of the ability of spaceborne radar and lidar to retrieve the microphysical and radiative properties of ice clouds. J. Atmos. Oceanic Technol., 23 , 211227.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45 , 301317.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet—Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88 , 883898.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59 , 18721884.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Matrosov, S. Y., A. V. Korolev, and A. J. Heymsfield, 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19 , 10031018.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beitrage zur optik truber mieden, speziell kolloidaler metallosingen. Ann. Phys., 25 , 377445.

  • Mitchell, D., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocity. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., S. Iwasaki, M. Yasui, H. Horie, H. Kuroiva, and H. Kumagai, 2000: An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar. J. Geophys. Res., 108 .4226, doi:10.1029/2001JD001225.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2003: Terminal fall velocity and the FASTEX cyclones. Quart. J. Roy. Meteor. Soc., 129 , 15131535.

  • Protat, A., J. Delanoë, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. Brown, 2007: Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database. J. Appl. Meteor. Climatol., 46 , 557572.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat Mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Tinel, C., J. Testud, J. Pelon, R. H. Hogan, A. Protat, J. Delanoë, and D. Bouniol, 2005: The retrieval of ice cloud properties from cloud radar and lidar synergy. J. Appl. Meteor., 44 , 860875.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41 , 218229.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 967 619 293
PDF Downloads 371 125 12