Dynamic Surface Interface Exchanges of Mercury: A Review and Compartmentalized Modeling Framework

Jesse O. Bash University of Connecticut, Storrs, Connecticut

Search for other papers by Jesse O. Bash in
Current site
Google Scholar
PubMed
Close
,
Patricia Bresnahan University of Connecticut, Storrs, Connecticut

Search for other papers by Patricia Bresnahan in
Current site
Google Scholar
PubMed
Close
, and
David R. Miller University of Connecticut, Storrs, Connecticut

Search for other papers by David R. Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper presents a review of recent natural surface mercury exchange research in the context of a new modeling framework. The literature indicates that the mercury biogeochemical flux is more dynamic than the current models predict, with interacting multimedia storage and processes. Although several natural mercury emissions models have been created and incorporated into air quality models (AQMs), none are coupled with air quality models on a mass balance basis, and all lack the capacity to explain processes that involve the transport of mercury across atmosphere–surface media concentration gradients. Existing natural mercury emission models treat the surface as both an infinite source and infinite sink for emissions and deposition, respectively, and estimate emissions through the following three pathways: soil, vegetation, and surface waters. The use of these three transport pathways, but with compartmentalized surface storage in a surface–vegetation–atmosphere transport (SVAT) resistance model, is suggested. Surface water fluxes will be modeled using a two-film diffusion model coupled to a surface water photochemical model. This updated framework will allow both the parameterization of the transport of mercury across atmosphere–surface media concentration gradients and the accumulation/depletion of mercury in the surface media. However, several key parameters need further experimental verification before the proposed modeling framework can be implemented in an AQM. These include soil organic mercury interactions, bioavailability, cuticular transport of mercury, atmospheric surface compensation points for different vegetation species, and enhanced soil diffusion resulting from pressure perturbations.

Corresponding author address: Jesse O. Bash, National Oceanic and Atmospheric Administration, Office of Atmospheric Research, Atmospheric Sciences Modeling Division, (MD-E243-04), 109 T. W. Alexander Drive, Room D-211E, Research Triangle Park, NC 27711. Email: jesse.bash@noaa.gov

This article included in the NOAA/EPA Golden Jubilee special collection.

Abstract

This paper presents a review of recent natural surface mercury exchange research in the context of a new modeling framework. The literature indicates that the mercury biogeochemical flux is more dynamic than the current models predict, with interacting multimedia storage and processes. Although several natural mercury emissions models have been created and incorporated into air quality models (AQMs), none are coupled with air quality models on a mass balance basis, and all lack the capacity to explain processes that involve the transport of mercury across atmosphere–surface media concentration gradients. Existing natural mercury emission models treat the surface as both an infinite source and infinite sink for emissions and deposition, respectively, and estimate emissions through the following three pathways: soil, vegetation, and surface waters. The use of these three transport pathways, but with compartmentalized surface storage in a surface–vegetation–atmosphere transport (SVAT) resistance model, is suggested. Surface water fluxes will be modeled using a two-film diffusion model coupled to a surface water photochemical model. This updated framework will allow both the parameterization of the transport of mercury across atmosphere–surface media concentration gradients and the accumulation/depletion of mercury in the surface media. However, several key parameters need further experimental verification before the proposed modeling framework can be implemented in an AQM. These include soil organic mercury interactions, bioavailability, cuticular transport of mercury, atmospheric surface compensation points for different vegetation species, and enhanced soil diffusion resulting from pressure perturbations.

Corresponding author address: Jesse O. Bash, National Oceanic and Atmospheric Administration, Office of Atmospheric Research, Atmospheric Sciences Modeling Division, (MD-E243-04), 109 T. W. Alexander Drive, Room D-211E, Research Triangle Park, NC 27711. Email: jesse.bash@noaa.gov

This article included in the NOAA/EPA Golden Jubilee special collection.

Save
  • Asher, W. E., and R. Wanninkhof, 1995: The effect of breaking waves on the analysis of dual-tracer gas exchange measurements. Air–Water Gas Transfer, B. Jahne and E. C. Monahan, Eds., AEON Verlag, 517–528.

    • Search Google Scholar
    • Export Citation
  • Asher, W. E., L. M. Karle, B. J. Higgens, P. J. Farley, E. C. Monahan, and I. S. Leifer, 1996: The influence of bubble plumes on air-seawater gas transfer velocities. J. Geophys. Res., 101 , C5. 1202712041.

    • Search Google Scholar
    • Export Citation
  • Bash, J. O., D. R. Miller, T. H. Meyer, and P. A. Bresnahan, 2004: Northeast United States and southeast Canada natural mercury emissions estimated with a surface emission model. Atmos. Environ., 38 , 56835692.

    • Search Google Scholar
    • Export Citation
  • Bishop, K. H., Y-H. Lee, J. Munthe, and E. Dambrine, 1998: Xylem sap as a pathway for total mercury methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry, 40 , 101113.

    • Search Google Scholar
    • Export Citation
  • Bullock Jr., R. O., and K. A. Brehme, 2002: Atmospheric mercury simulation using the CMAQ model: Formulation description and analysis of wet deposition results. Atmos. Environ., 26 , 21352146.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and J. M. Norman, 1998: An Introduction to Environmental Biophysics. 2d ed. Springer-Verlag, 286 pp.

  • Carpi, A., and S. E. Lindberg, 1998: Application of a Teflon™ dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil. Atmos. Environ., 32 , 873882.

    • Search Google Scholar
    • Export Citation
  • Chen, D-X., and M. B. Coughenour, 1994: GEMTM: A general model for energy and mass transfer of land surfaces and its applications at the FIFE sites. Agric. For. Meteor., 68 , 145171.

    • Search Google Scholar
    • Export Citation
  • Costa, M., and P. Liss, 1999: Photoreduction of mercury in sea water and its possible implications of Hg0 air–sea fluxes. Mar. Chem., 68 , 8795.

    • Search Google Scholar
    • Export Citation
  • Costa, M., and P. Liss, 2000: Photoreduction and evolution of mercury from seawater. Sci. Total Environ., 261 , 125135.

  • Ericksen, J. A., and M. S. Gustin, 2004: Foliar exchange of mercury as a function of soil and air mercury concentrations. Sci. Total Environ., 324 , 271279.

    • Search Google Scholar
    • Export Citation
  • Ericksen, J. A., M. S. Gustin, D. E. Schorran, D. W. Johnson, S. E. Lindberg, and J. S. Coleman, 2003: Accumulation of atmospheric mercury in forest foliage. Atmos. Environ., 37 , 16131622.

    • Search Google Scholar
    • Export Citation
  • Frescholtz, T. B., M. S. Gustin, D. E. Schorran, and C. J. Fernandez, 2003: Assessing the source of mercury in foliar tissue of quaking aspen. Environ. Toxicol. Chem., 22 , 21142119.

    • Search Google Scholar
    • Export Citation
  • Gabriel, M. C., and D. G. Williamson, 2004: Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ. Geochem. Health, 26 , 421434.

    • Search Google Scholar
    • Export Citation
  • Gbor, P. K., D. Wen, F. Meng, F. Yang, B. Zhang, and J. J. Sloan, 2006: Improved model for mercury emission, transport and deposition. Atmos. Environ., 40 , 973983.

    • Search Google Scholar
    • Export Citation
  • Greger, M., Y. Wang, and C. Neuschutz, 2005: Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plat species. Environ. Pollut., 134 , 201208.

    • Search Google Scholar
    • Export Citation
  • Hanson, P. J., S. E. Lindberg, T. A. Tabberer, J. G. Owens, and K-H. Kim, 1995: Foliar exchange of mercury vapor: Evidence for a compensation point. Water Air Soil Pollut., 80 , 611620.

    • Search Google Scholar
    • Export Citation
  • Heaton, A. C. P., C. L. Rugh, H. J. Wang, and R. B. Meagher, 2005: Physiological responses of transgenic merA-tobacco (Nicotiana tobacum) to foliar and root mercury exposure. Water Air Soil Pollut., 161 , 1–4. 137155.

    • Search Google Scholar
    • Export Citation
  • Hukin, D., C. Doering-Saad, C. R. Thomas, and J. Pritchard, 2002: Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta, 215 , 10471056.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. W., J. A. Benesch, M. S. Gustin, D. S. Schorran, S. E. Lindberg, and J. S. Coleman, 2003: Experimental evidence against diffusion control of Hg evasion from soils. Sci. Total Environ., 304 , 175184.

    • Search Google Scholar
    • Export Citation
  • Lee, D. S., E. Nemitz, D. Fowler, and R. D. Kingdon, 2001: Modelling atmospheric mercury transport and deposition across Europe and the UK. Atmos. Environ., 35 , 54555466.

    • Search Google Scholar
    • Export Citation
  • Lee, X., G. Benoit, and X. Hu, 2000: Total gaseous mercury concentrations and flux over a coastal saltmarsh vegetation in Connecticut, USA. Atmos. Environ., 34 , 42054213.

    • Search Google Scholar
    • Export Citation
  • Lenti, K., F. Fodor, and B. Böddi, 2002: Mercury inhibits the activity of the NADPH: Protochlorophyllide oxidoreductase (POR). Photosynthetica, 40 , 145151.

    • Search Google Scholar
    • Export Citation
  • Leonard, T. L., G. E. Taylor, M. S. Gustin, and G. C. J. Fernandez, 1998: Mercury and plants in contaminated soils: 1. Uptake, portioning, and emission to the atmosphere. Environ. Toxicol. Chem., 17 , 20632071.

    • Search Google Scholar
    • Export Citation
  • Lin, C-J., P. Pongprueksa, S. E. Lindberg, S. O. Pehkonen, D. Byun, and C. Jang, 2006: Scientific uncertainties in atmospheric mercury models. I: Model science evaluation. Atmos. Environ., 40 , 29112928.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and Y. Tao, 2003: A numerical modelling study on regional mercury budget for eastern North America. Atmos. Chem. Phys., 3 , 535548.

    • Search Google Scholar
    • Export Citation
  • Lindberg, S. E., P. J. Hanson, T. P. Meyers, and K-H. Kim, 1998: Air/surface exchange of mercury vapor over forests—The need for a reassessment of continental biogenic emissions. Atmos. Environ., 32 , 895908.

    • Search Google Scholar
    • Export Citation
  • Lindberg, S. E., H. Zhang, A. F. Vette, M. S. Gustin, M. O. Barnett, and T. Kuiken, 2002: Dynamic flux chamber measurements of gaseous mercury emission fluxes over soils: Part 2—Effect of flushing flow rate and verification of a two-resistance exchange interface simulation model. Atmos. Environ., 36 , 847859.

    • Search Google Scholar
    • Export Citation
  • Mackay, D., and A. T. K. Yeun, 1983: Mass transfer coefficient correlations for volatilization of organic solutes from water. Environ. Sci. Technol., 17 , 211217.

    • Search Google Scholar
    • Export Citation
  • Macleod, M., T. E. Mckone, and D. Mackay, 2005: Mass balance for mercury in the San Francisco Bay Area. Environ. Sci. Technol., 39 , 67216729.

    • Search Google Scholar
    • Export Citation
  • Meagher, R. B., and A. C. P. Heaton, 2005: Strategies for the engineered phytoremediation of toxic element pollution: Mercury and arsenic. J. Ind. Microbiol. Biotechnol., 32 , 11–12. 502513.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., and M. H. Unsworth, 1990: Principles of Environmental Physics. Edward Arnold, 304 pp.

  • Moreno, F. N., C. W. N. Anderson, R. B. Stewart, B. H. Robinson, M. Ghomshei, and J. A. Meech, 2005a: Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol., 166 , 445454.

    • Search Google Scholar
    • Export Citation
  • Moreno, F. N., C. W. N. Anderson, R. B. Stewart, B. H. Robinson, R. Nomura, M. Ghomshei, and J. A. Meech, 2005b: Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-containing mine tailings. Plant Soil, 275 , 233246.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D. D. S., K. Alapaty, and S. Raman, 2003: A photosynthesis-based dry deposition modeling approach. Air Water Soil Pollut., 144 , 171194.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Poissant, L., M. Amyot, M. Pilote, and D. Lean, 2000: Mercury water–air exchange over the upper St. Lawrence River and Lake Ontario. Environ. Sci. Technol., 34 , 30693078.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1991: Vegetation–atmosphere interactions in homogeneous and heterogeneous terrain: Some implications of mixed-layer dynamics. Vegetatio, 91 , 105120.

    • Search Google Scholar
    • Export Citation
  • Ravichandran, M., 2004: Interactions between mercury and dissolved organic matter—A review. Chemosphere, 55 , 319331.

  • Rea, A. W., S. E. Lindberg, and G. J. Keeler, 2000: Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environ. Sci. Technol., 34 , 24182425.

    • Search Google Scholar
    • Export Citation
  • Rea, A. W., S. E. Lindberg, T. Scherbatskoy, and G. J. Keeler, 2002: Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water Air Soil Pollut., 133 , 4967.

    • Search Google Scholar
    • Export Citation
  • Rolfhus, K. R., and W. F. Fitzgerald, 2001: The evasion ad spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. Geochim. Cosmohim. Acta, 65 , 407418.

    • Search Google Scholar
    • Export Citation
  • Solymosi, K., K. Lenti, B. Myśliwa-Kurdziel, J. Fidy, K. Strzałka, and B. Böddi, 2004: Hg2+ reacts with different components of the NADPH: Protochlorophyllide oxidoreductase macrodomains. Plant Biol., 6 , 358368.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. B., 1988: Modeling surface conductance of pine forest. Agric. For. Meteor., 43 , 1935.

  • Takle, E. S., and Coauthors, 2004: Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric. For. Meteor., 124 , 193206.

    • Search Google Scholar
    • Export Citation
  • Trapp, S., and M. Matthies, 1995: Generic one compartment model for uptake of organic chemicals by foliar vegetation. Environ. Sci. Technol., 29 , 23332338.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and M. Greger, 2004: Clonal differences in mercury tolerance, accumulation, and distribution in willow. J. Environ. Qual., 33 , 17791785.

    • Search Google Scholar
    • Export Citation
  • Wania, F., and D. Mackay, 1999: The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ. Pollut., 100 , 223240.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 , 73737382.

  • Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23 , 12931304.

    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., and B. B. Hicks, 2000: A review of the current status of knowledge in dry deposition. Atmos. Environ., 34 , 22612282.

  • Xu, X., X. Yang, D. R. Miller, J. J. Helble, and R. J. Carley, 1999: Formulation of bi-directional atmosphere–surface exchanges of elemental mercury. Atmos. Environ., 33 , 43454355.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., and S. E. Lindberg, 1999: Processes influencing the emission of mercury from soils: A conceptual model. J. Geophys. Res., 104 , D17. 2188921896.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., S. E. Lindberg, M. O. Barnett, A. F. Vette, and M. S. Gustin, 2002: Dynamic flux chamber measurements of gaseous mercury emission fluxes over soils. Part 1: Simulation of gaseous mercury emissions from soils using a two-resistance exchange resistance model. Atmos. Environ., 36 , 835846.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., J. R. Brook, and R. Vet, 2003: A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys., 3 , 20672082.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1892 1199 808
PDF Downloads 308 120 6