Evaluation and Comparison of Noah and Pleim–Xiu Land Surface Models in MM5 Using GÖTE2001 Data: Spatial and Temporal Variations in Near-Surface Air Temperature

J-F. Miao Department of Earth Sciences, Göteborg University, Göteborg, Sweden

Search for other papers by J-F. Miao in
Current site
Google Scholar
PubMed
Close
,
D. Chen Department of Earth Sciences, Göteborg University, Göteborg, Sweden

Search for other papers by D. Chen in
Current site
Google Scholar
PubMed
Close
, and
K. Borne Department of Earth Sciences, Göteborg University, Göteborg, Sweden

Search for other papers by K. Borne in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.

Corresponding author address: Dr. Junfeng Miao, Department of Earth Sciences, Göteborg University, P.O. Box 460, 405 30 Göteborg, Sweden. Email: junfeng@gvc.gu.se

Abstract

In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.

Corresponding author address: Dr. Junfeng Miao, Department of Earth Sciences, Göteborg University, P.O. Box 460, 405 30 Göteborg, Sweden. Email: junfeng@gvc.gu.se

Save
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117 , 21132136.

    • Search Google Scholar
    • Export Citation
  • Borne, K., and Coauthors, 2005: Data report on measurements of meteorological- and air pollution variables during the campaign GÖTE-2001. Research Rep. C67, Earth Sciences Centre, Göteborg University, Gothenburg, Sweden, 28 pp.

  • Case, J. L., J. Manobianco, A. V. Dianic, M. W. Wheeler, D. E. Harms, and C. R. Parks, 2002: Verification of high-resolution RAMS forecasts over east-central Florida during the 1999 and 2000 summer months. Wea. Forecasting, 17 , 11331151.

    • Search Google Scholar
    • Export Citation
  • Chen, F., 2005: Variability in global land surface energy budgets during 1987-1988 simulated by an off-line land surface model. Climate Dyn., 24 , 667684.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994a: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33 , 13821401.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994b: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33 , 13231340.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101 , D3. 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, F., T. T. Warner, and K. Manning, 2001: Sensitivity of orographic moist convection to landscape variability: A study of the Buffalo Creek, Colorado, flash flood case of 1996. J. Atmos. Sci., 58 , 32043223.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Y. Liu, H. Kusaka, M. Tewari, J-W. Bao, C-F. Lo, and K-H. Lau, 2004: Challenge of forecasting urban weather with NWP models. Preprints, Fifth WRF/14th MM5 Users’ Workshop, Boulder, CO, NCAR, 34–42.

  • Dandou, A., M. Tombrou, E. Akylas, N. Soulakellis, and E. Bossioli, 2005: Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5). J. Geophys. Res., 110 .D10102, doi:10.1029/2004JD005192.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., 1999: Surface energy balance complexity in GCM land surface models. Climate Dyn., 15 , 389403.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., T. L. Otte, and J. K. S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model. Bound.-Layer Meteor., 113 , 111158.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108 .8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fan, H-L., and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ., 39 , 7384.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

  • Grell, G. A., S. Emeis, W. R. Stockwell, T. Schoenemeyer, R. Forkel, J. Michalakes, R. Knoche, and W. Seidl, 2000: Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos. Environ., 34 , 14351453.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., J. A. Zehnder, W. L. Stefanov, Y. Liu, and M. A. Zoldak, 2005: Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J. Appl. Meteor., 44 , 12811297.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76 , 489503.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., K. McGuffie, and A. J. Pitman, 1996: The Project for Intercomparison of Land-surface Parametrization Schemes (PILPS): 1992 to 1995. Climate Dyn., 12 , 849859.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., and Coauthors, 2001: Evaluating the performance of regional-scale photochemical modelling systems: Part I-meteorological predictions. Atmos. Environ., 35 , 41594174.

    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., L. Bastidas, H. Gupta, S. Sorooshian, K. Mitchell, and W. Emmerich, 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6 , 6884.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jacquemin, B., and J. Noilhan, 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52 , 93134.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kemball-Cook, S., Y. Jia, C. Emery, R. Morris, Z. Wang, and G. Tonnesen, cited. 2004: 2002 annual MM5 36 km simulation to support WRAP CMAQ visibility modeling for the Section 308 SIP/TIP: Preliminary report on the initial 2002 36 km MM5 simulation performed during 2003. [Available online at http://pah.cert.ucr.edu/aqm/308/reports/mm5/2002_MM5_2003WRAPr.pdf.].

  • Koren, V., J. Schaake, K. Mitchell, Q-Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 , D16. 1956919585.

    • Search Google Scholar
    • Export Citation
  • Landberg, L., L. Myllerup, O. Rathmann, E. L. Petersen, B. H. Jørgensen, J. Badger, and N. G. Mortensen, 2003: Wind resource estimation—An overview. Wind Energy, 6 , 261271.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data- assimilation and forecasting system for the Oklahoma city area during the Joint Urban 2003 Field Project. J. Appl. Meteor. Climatol., 45 , 912929.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23 , 222234.

  • Mahrt, L., and H-L. Pan, 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29 , 120.

  • Miao, J-F., 2006: Meteorological modelling in coastal areas—Local climate and air quality. Ph.D. thesis A107, Earth Sciences Centre, Göteborg University, Göteborg, Sweden, 190 pp.

  • Miao, J-F., D. Chen, and K. Wyser, 2006: Modelling subgrid scale dry deposition velocity of O3 over the Swedish west coast with MM5-PX model. Atmos. Environ., 40 , 415429.

    • Search Google Scholar
    • Export Citation
  • Miao, J-F., and Coauthors, 2007: Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. Meteor. Atmos. Phys., in press.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-K model for the longwave. J. Geophys. Res., 102 , D14. 1666316682.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., 2001: On the uncertainty in mesoscale modeling caused by surface parameters. Meteor. Atmos. Phys., 76 , 119141.

  • Mölders, N., and M. A. Olson, 2004: Impact of urban effects on precipitation in high latitudes. J. Hydrometeor., 5 , 409429.

  • Mölders, N., and J. E. Walsh, 2004: Atmospheric response to soil-frost and snow in Alaska in March. Theor. Appl. Climatol., 77 , 77105.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Olerud, D., and A. Sims, cited. 2003: MM5 sensitivity modeling in support of VISTAS (Visibility Improvement—State and Tribal Association): Task 2e deliverable. [Available online at http://www.baronams.com/projects/VISTAS/reports/VISTAS_TASK2e_draft.pdf.].

  • Otte, T. L., A. Lacser, S. Dupont, and J. K. S. Ching, 2004: Implementation of an urban canopy parameterization in a mesoscale meteorological model. J. Appl. Meteor., 43 , 16481665.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Pitman, A. J., and Coauthors, 1999: Key results and implications from phase 1(c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dyn., 15 , 673684.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26A , 965981.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34 , 1632.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42 , 18111822.

  • Polcher, J., and Coauthors, 1998: A proposal for a general interface between land surface schemes and general circulation models. Global Planet. Change, 19 , 261276.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., 1987: Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys. Res. Lett., 14 , 139142.

  • Seaman, N. L., 2000: Meteorological modelling for air-quality assessments. Atmos. Environ., 34 , 22312259.

  • Sridhar, V., R. L. Elliott, F. Chen, and J. A. Brotzge, 2002: Validation of the Noah-OSU land surface model using surface flux measurements in Oklahoma. J. Geophys. Res., 107 .4418, doi:10.1029/2001JD001306.

    • Search Google Scholar
    • Export Citation
  • Sridhar, V., R. L. Elliott, and F. Chen, 2003: Scaling effects on modelled surface energy-balance components using the Noah-OSU land surface model. J. Hydrol., 280 , 105123.

    • Search Google Scholar
    • Export Citation
  • Tilley, J. S., and A. H. Lynch, 1998: On the applicability of current land surface schemes for Arctic tundra: An intercomparison study. J. Geophys. Res., 103 , D22. 2905129063.

    • Search Google Scholar
    • Export Citation
  • Tonnesen, G., and Coauthors, 2005: 2004 interim report for the Western Regional Air Partnership (WRAP) Regional Modeling Center (RMC). WGA Contract 30203. [Available online at http://pah.cert.ucr.edu/aqm/308/reports/final/2004_RMC_interim_report_final.pdf.].

  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40 , 192209.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2002: Simple modifications to improve fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model performance for the Phoenix, Arizona, metropolitan area. J. Appl. Meteor., 41 , 971979.

    • Search Google Scholar
    • Export Citation
  • Zhong, S-Y., and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake valley. Mon. Wea. Rev., 131 , 13011322.

    • Search Google Scholar
    • Export Citation
  • Zhong, S-Y., H-J. In, X-D. Bian, J. Charney, W. Heilman, and B. Potter, 2005: Evaluation of real-time high-resolution MM5 predictions over the Great Lakes region. Wea. Forecasting, 20 , 6381.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1486 837 457
PDF Downloads 575 149 7