• Anderson, J., 1999: Meteorological changes during a solar eclipse. Weather, 54 , 207215.

  • Anfossi, D., G. Schayes, G. Degrazia, and A. Goulart, 2004: Atmospheric turbulence decay during the solar total eclipse of 11 August 1999. Bound.-Layer Meteor., 111 , 301311.

    • Search Google Scholar
    • Export Citation
  • Attié, J-L., and P. Durand, 2003: Conditional wavelet technique applied to aircraft data measured in the thermal internal boundary layer during sea-breeze events. Bound.-Layer Meteor., 106 , 359382.

    • Search Google Scholar
    • Export Citation
  • Brach, E. J., R. L. Desjardins, and G. St-Amour, 1981: Open path CO2 analyzer. J. Phys. E: Sci. Instrum., 14 , 14151419.

  • Businger, J. A., W. F. Dabberdt, A. C. Delany, T. W. Horst, C. L. Martin, S. P. Oncley, and S. R. Semmer, 1990: The NCAR Atmospheric-Surface Turbulent Exchange Research (ASTER) facility. Bull. Amer. Meteor. Soc., 71 , 10061011.

    • Search Google Scholar
    • Export Citation
  • Chahuneau, F., R. L. Desjardins, E. Brach, and R. Verdon, 1989: A micrometeorological facility for eddy flux measurements of CO2 and H2O. J. Atmos. Oceanic Technol., 6 , 193200.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., G. Morales, E. Terradellas, and C. Yagüe, 2002: Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer. Bound.-Layer Meteor., 105 , 305328.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1990: The wavelet transform time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36 , 9611004.

  • Desjardins, R. L., J. I. MacPherson, P. H. Schuepp, and F. Karanja, 1989: An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Bound.-Layer Meteor., 47 , 5569.

    • Search Google Scholar
    • Export Citation
  • Desjardins, R. L., J. I. MacPherson, H. H. Neumann, G. den Hartog, and P. H. Schuepp, 1995: Flux estimates of latent and sensible heat, carbon dioxide and ozone using an aircraft-tower combination. Atmos. Environ., 29 , 31473158.

    • Search Google Scholar
    • Export Citation
  • Eaton, F. D., J. R. Hines, W. H. Hatch, R. M. Cionco, J. Byers, D. Garvey, and D. R. Miller, 1997: Solar eclipse effects observed in the planetary boundary layer over a desert. Bound.-Layer Meteor., 83 , 331346.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques, Part I: Averaging and coordinate rotation. Bound.-Layer Meteor., 107 , 148.

    • Search Google Scholar
    • Export Citation
  • Foken, T., B. Wichura, O. Klemm, J. Gerchau, M. Winterhalter, and T. Weidinger, 2001: Micrometeorological conditions during the total solar eclipse of August 11, 1999. Meteor. Z., 10 , 171178.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., 1991: Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96 , 85938609.

    • Search Google Scholar
    • Export Citation
  • Goulart, A., G. Degrazia, U. Rizza, and D. Anfossi, 2003: A theoretical model for the study of convective turbulence decay and comparison with large-eddy simulation data. Bound.-Layer Meteor., 107 , 143155.

    • Search Google Scholar
    • Export Citation
  • Hudgins, L. E., M. E. Mayer, and C. A. Friehe, 1993: Fourier and wavelet analysis of atmospheric turbulence. Progress in Wavelet Analysis and Applications, E. Meyers and S. Roques, Eds., Editions Frontiers, 491–498.

    • Search Google Scholar
    • Export Citation
  • Kohsiek, W., 1991: Infrared H2O/CO2 sensor with fiber optics. Proc. Seventh Symp. on Meteorological Observations and Instrumentation, New Orleans, LA, Amer. Meteor. Soc., 352–355.

  • Kumar, P., and E. Foufoula-Georgiou, 1994: Wavelet analysis in geophysics: An introduction. Wavelet in Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds., Academic Press, 1–43.

    • Search Google Scholar
    • Export Citation
  • MacPherson, J. I., 1990: Wind and flux calculations on the NAE Twin Otter. Institute for Aerospace Research, National Research Council of Canada Rep. LTR-FR-109, 22 pp.

  • MacPherson, J. I., 1992: NRC Twin Otter operations in the 1991 California Ozone Deposition Experiment. Institute for Aerospace Research, National Research Council of Canada Rep. LTR-FR-118, 41 pp.

  • MacPherson, J. I., R. L. Desjardins, P. H. Schuepp, and R. Pearson, 1995: Aircraft-measured ozone deposition in the San Joaquin Valley of California. Atmos. Environ., 29 , 31333145.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and T. Foken, 2004: Documentation and instruction manual of the eddy covariance software package TK2. Abteilung Mikrometeorologie, Universität Bayreuth Arbeitsergebnisse 26, 44 pp. [Available online at http://www.bitoek.uni-bayreuth.de/mm/.].

  • Moore, C. J., 1986: Frequency response corrections for eddy correlation systems. Bound.-Layer Meteor., 37 , 1735.

  • Nieuwstadt, F. T. M., and R. A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43 , 532546.

  • Oncley, S. P., A. C. Delany, T. W. Horst, and P. P. Tans, 1993: Verification of flux measurement using relaxed eddy accumulation. Atmos. Environ., 27A , 24172426.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., C. A. Friehe, J. C. Larue, J. A. Businger, E. C. Itsweire, and S. S. Chang, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J. Atmos. Sci., 53 , 10291044.

    • Search Google Scholar
    • Export Citation
  • Papoulis, A., 1990: Probability and Statistics. 1st ed. Prentice Hall, 456 pp.

  • Pederson, J. R., and Coauthors, 1995: California ozone deposition experiment: Methods, results, and opportunities. Atmos. Environ., 29 , 31153132.

    • Search Google Scholar
    • Export Citation
  • Schayes, G., J. L. Melice, and V. Dulière, 2002: Surface layer parameters during the solar eclipse of 11 August 1999. Air Pollution Modeling and Its Applications XV, C. Borrego and G. Schayes, Eds., Kluwer Academic, 517–518.

    • Search Google Scholar
    • Export Citation
  • Schmidt, R. W. H., A. M. Jochum, and N. Entstrasser, 1991: Airborne ozone flux measurement using a new fast response detector. Proc. Seventh Symp. on Meteorological Observations and Instrumentation, New Orleans, LA, Amer. Meteor. Soc., 243–246.

  • Schotanus, P., F. T. M. Nieuwstadt, and H. A. R. DeBruin, 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound.-Layer Meteor., 26 , 8193.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1997: Decay of convective turbulence revisited. Bound.-Layer Meteor., 82 , 503517.

  • Stewart, R. B., and W. R. Rouse, 1974: Radiation and energy budgets at an arctic site during the solar eclipse of July 10, 1972. Arct. Alp. Res., 6 , 231236.

    • Search Google Scholar
    • Export Citation
  • Strunin, M. A., and T. Hiyama, 2004: Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia. Hydrol. Processes, 18 , 30813098.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Swinbank, W. C., 1951: The measurement of vertical transfer of heat and water vapour by eddies in the lower atmosphere. J. Meteor., 8 , 135145.

    • Search Google Scholar
    • Export Citation
  • Tanner, B. D., E. Swiatek, and J. P. Greene, 1993: Density fluctuations and use of the krypton hygrometer in surface flux measurements. Management of Irrigation and Drainage Systems: Integrated Perspectives, R. G. Allen, Ed., American Society of Civil Engineers, 945–952.

    • Search Google Scholar
    • Export Citation
  • Terradellas, E., G. Morales, J. Cuxart, and C. Yagüe, 2001: Wavelet methods: Application to the study of the stable atmospheric boundary layer under non-stationary conditions. Dyn. Atmos. Oceans, 34 , 225244.

    • Search Google Scholar
    • Export Citation
  • Terradellas, E., M. R. Soler, E. Ferreres, and M. Bravo, 2005: Analysis of oscillations in the stable atmospheric boundary layer using wavelet methods. Bound.-Layer Meteor., 114 , 489518.

    • Search Google Scholar
    • Export Citation
  • Thomas, C., and T. Foken, 2005: Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor. Appl. Climatol., 80 , 91104.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106 , 85100.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99 , 127150.

  • Zhang, S. F., J. C. Wyngaard, J. A. Businger, and S. P. Oncley, 1986: Response characteristics of the U.W. sonic anemometer. J. Atmos. Oceanic Technol., 3 , 315323.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

Atmospheric Response to a Partial Solar Eclipse over a Cotton Field in Central California

View More View Less
  • 1 Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Flight Research Laboratory, Institute for Aerospace Research, National Research Council, Ottawa, Ontario, Canada
Restricted access

Abstract

The partial solar eclipse on 11 July 1991 in central California, with 58.3% maximum coverage, provided an exceptional opportunity to study the temporal response of processes in the atmospheric boundary layer to an abrupt change in solar radiation. Almost laboratory-like conditions were met over a cotton field, since no clouds disturbed the course of the eclipse. Tower-based and complementing aircraft-based systems monitored the micrometeorological conditions over the site. Temperature profile measurements indicated neutral stratification during the maximum eclipse in contrast to the unstable conditions before and after the eclipse. Accordingly, the sensible heat exchange completely stopped, as a wavelet analysis of the tower measurements and airborne eddy-covariance measurements showed. Turbulent fluxes of water vapor, carbon dioxide, and ozone were reduced by approximately ⅔ at the peak of the eclipse. Wavelet analysis further indicated that the same eddies contributed to the turbulent transport of water vapor and carbon dioxide, whereas sensible heat was transported by different ones. An analysis of the decay of turbulent kinetic energy followed a power law of time with an exponent of −1.25. The response of the sensible heat flux was 8–13 min delayed relative to the solar forcing, whereas no significant time lag could be detected for the turbulent fluxes of air constituents.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Matthias Mauder, Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A0C6, Canada. Email: MauderM@agr.gc.ca

Abstract

The partial solar eclipse on 11 July 1991 in central California, with 58.3% maximum coverage, provided an exceptional opportunity to study the temporal response of processes in the atmospheric boundary layer to an abrupt change in solar radiation. Almost laboratory-like conditions were met over a cotton field, since no clouds disturbed the course of the eclipse. Tower-based and complementing aircraft-based systems monitored the micrometeorological conditions over the site. Temperature profile measurements indicated neutral stratification during the maximum eclipse in contrast to the unstable conditions before and after the eclipse. Accordingly, the sensible heat exchange completely stopped, as a wavelet analysis of the tower measurements and airborne eddy-covariance measurements showed. Turbulent fluxes of water vapor, carbon dioxide, and ozone were reduced by approximately ⅔ at the peak of the eclipse. Wavelet analysis further indicated that the same eddies contributed to the turbulent transport of water vapor and carbon dioxide, whereas sensible heat was transported by different ones. An analysis of the decay of turbulent kinetic energy followed a power law of time with an exponent of −1.25. The response of the sensible heat flux was 8–13 min delayed relative to the solar forcing, whereas no significant time lag could be detected for the turbulent fluxes of air constituents.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Matthias Mauder, Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A0C6, Canada. Email: MauderM@agr.gc.ca

Save