• Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107 .4792, doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and Y. Yang, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 2. Cloud thermodynamic phase. J. Geophys. Res., 105 , 1178111792.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44 , 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y-X. Hu, and S. T. Bedka, 2005b: Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44 , 18961911.

    • Search Google Scholar
    • Export Citation
  • Cartalis, C., N. Chrysoulakis, H. Feidas, and N. Pitsitakis, 2004: Categorization of cold period weather types in Greece on the basis of the photointerpretation of NOAA/AVHRR imagery. Int. J. Remote Sens., 25 , 29512977.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123 , 357388.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 1999: Cirrus detrainment-temperature feedback. Geophys. Res. Lett., 26 , 12951298.

  • Chung, S., S. Ackerman, P. F. van Delst, and W. P. Menzel, 2000: Model calculations and interferometer measurements of ice-cloud characteristics. J. Appl. Meteor., 39 , 634644.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16 , 12411247.

    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. Part II: Cirrus. Quart. J. Roy. Meteor. Soc., 114 , 145164.

  • Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res., 110 .D05205, doi:10.1029/2004JD004949.

    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, and C. A. M. Rodriguez, 2006: Effect of cirrus clouds on the diurnal cycle of tropical deep convective clouds. J. Geophys. Res., 111 .D06209, doi:10.1029/2005JD006208.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., S. Kinne, and O. B. Toon, 1994: Tropical cirrus cloud radiative forcing: Sensitivity studies. Geophys. Res. Lett., 21 , 20232026.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., B. Wang, K. Goya, K. Hocke, S. D. Eckermann, J. Ma, D. L. Wu, and W. G. Read, 2004: Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses. J. Geophys. Res., 109 .D03111, doi:10.1029/2003JD003756.

    • Search Google Scholar
    • Export Citation
  • Jin, M., and R. E. Dickinson, 2000: A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances. J. Geophys. Res., 105 , 2703727048.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., W. B. Rossow, and D. P. Wylie, 1996: Comparison of the climatologies of high-level clouds from HIRS and ISCCP. J. Climate, 9 , 28502879.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riédi, S. A. Ackerman, and K-N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21 , 857875.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B. Wind, cited. 2006: Collection 005 change summary for the MODIS cloud optical property (06_OD) algorithm. [Available online at modis-atmos.gsfc.nasa.gov/C005_Changes/C005_CloudOpticalProperties_ver311.pdf.].

  • Li, J. L., and Coauthors, 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32 .L18710, doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Lin, W. Y., and M. H. Zhang, 2004: Evaluation of clouds and their radiative effects simulated by the NCAR Community Atmospheric Model against satellite observations. J. Climate, 17 , 33023318.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Liu, G., and J. A. Curry, 1999: Tropical ice water amount and its relations to other atmospheric hydrological parameters as inferred from satellite data. J. Appl. Meteor., 38 , 11821194.

    • Search Google Scholar
    • Export Citation
  • Liu, G., J. A. Curry, and R-S. Sheu, 1995: Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data. J. Geophys. Res., 100 , 1381113826.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., B. Chen, D. H. Bromwich, R. C. J. Somerville, W-H. Lee, and K. M. Hines, 1998: The impact of Antarctic cloud radiative properties on a GCM climate simulation. J. Climate, 11 , 447462.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17 , 45414563.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53 , 28132825.

  • McFarlane, N. A., G. J. Boer, J-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59 , 24582478.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22 , 377384.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., and K. N. Liou, 1995: Ice microphysics and climatic temperature feedback. Atmos. Res., 35 , 127138.

  • Pilewskie, P., and F. P. J. Valero, 1996: Response to “How much solar radiation do clouds absorb?”. Science, 271 , 11311133.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Rao, P. K., S. J. Holms, R. K. Anderson, J. S. Winston, and P. E. Lehr, 1990: Weather Satellites: Systems, Data, and Environmental Applications. Amer. Meteor. Soc., 503 pp.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and R. P. Allan, 2004: Evaluating climate model simulations of tropical cloud. Tellus, 56A , 308327.

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens., 27 , 145153.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., W. B. Rossow, F. Chéruy, A. Chédin, and N. A. Scott, 1999: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters. J. Climate, 12 , 21892213.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., A. Chédin, G. Rädel, N. A. Scott, and S. Serrar, 2006: Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Climate, 19 , 55315553.

    • Search Google Scholar
    • Export Citation
  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109 .D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107 .4781, doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101 , 2940729430.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, G. K. Yue, D. F. Young, and K. M. Skeens, 1998: A study of the vertical structure of tropical (20°S–20°N) optically thin clouds from SAGE II observations. Atmos. Res., 47–48 , 599614.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2005: Impact of cirrus crystal shape on solar spectral irradiance: A case study for subtropical cirrus. J. Geophys. Res., 110 .D03202, doi:10.1029/2004JD005294.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and L. Parker, 1992: On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res., 97 , 1279912823.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and P-H. Wang, 1997: Comparison of cloud frequency data from the high-resolution infrared radiometer sounder and the Stratospheric Aerosol and Gas Experiment II. J. Geophys. Res., 102 , 2989329900.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12 , 170184.

  • Wylie, D. P., P. W. Menzel, H. M. Woolf, and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7 , 19721986.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18 , 30213031.

    • Search Google Scholar
    • Export Citation
  • Wyser, K., 1998: The effective radius in ice clouds. J. Climate, 11 , 17931802.

  • Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer., 13A , 20722085.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996b: Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35 , 65686584.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110 .D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 3 3 3

High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 Remote Sensing Division, Naval Research Laboratory, Washington, D.C
  • | 3 Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
  • | 4 NASA Langley Research Center, Hampton, Virginia
  • | 5 NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics (30°S–30°N) over a 3-yr period from September 2002 through August 2005. The analyses are based on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both the NASA Earth Observing System Terra and Aqua platforms. The present analysis is based on the MODIS collection-4 data products. The cloud products provide daily, weekly, and monthly mean cloud fraction, cloud optical thickness, cloud effective radius, cloud-top temperature, cloud-top pressure, and cloud effective emissivity, which is defined as the product of cloud emittance and cloud fraction. This study is focused on high-level ice clouds. The MODIS-derived high clouds are classified as cirriform and deep convective clouds using the International Satellite Cloud Climatology Project (ISCCP) classification scheme. Cirriform clouds make up more than 80% of the total high clouds, whereas deep convective clouds account for less than 20% of the total high clouds. High clouds are prevalent over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, tropical America, and South America. Moreover, land–ocean, morning–afternoon, and summer–winter variations of high cloud properties are also observed.

Corresponding author address: Dr. Ping Yang, Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. Email: pyang@ariel.met.tamu.edu

Abstract

This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics (30°S–30°N) over a 3-yr period from September 2002 through August 2005. The analyses are based on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both the NASA Earth Observing System Terra and Aqua platforms. The present analysis is based on the MODIS collection-4 data products. The cloud products provide daily, weekly, and monthly mean cloud fraction, cloud optical thickness, cloud effective radius, cloud-top temperature, cloud-top pressure, and cloud effective emissivity, which is defined as the product of cloud emittance and cloud fraction. This study is focused on high-level ice clouds. The MODIS-derived high clouds are classified as cirriform and deep convective clouds using the International Satellite Cloud Climatology Project (ISCCP) classification scheme. Cirriform clouds make up more than 80% of the total high clouds, whereas deep convective clouds account for less than 20% of the total high clouds. High clouds are prevalent over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, tropical America, and South America. Moreover, land–ocean, morning–afternoon, and summer–winter variations of high cloud properties are also observed.

Corresponding author address: Dr. Ping Yang, Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. Email: pyang@ariel.met.tamu.edu

Save