Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar over Oklahoma City during JU2003

Yansen Wang U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by Yansen Wang in
Current site
Google Scholar
PubMed
Close
,
Cheryl L. Klipp U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by Cheryl L. Klipp in
Current site
Google Scholar
PubMed
Close
,
Dennis M. Garvey U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by Dennis M. Garvey in
Current site
Google Scholar
PubMed
Close
,
David A. Ligon U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by David A. Ligon in
Current site
Google Scholar
PubMed
Close
,
Chatt C. Williamson U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by Chatt C. Williamson in
Current site
Google Scholar
PubMed
Close
,
Sam S. Chang U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by Sam S. Chang in
Current site
Google Scholar
PubMed
Close
,
Rob K. Newsom Atmospheric Science Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Rob K. Newsom in
Current site
Google Scholar
PubMed
Close
, and
Ronald Calhoun Environmental Fluid Dynamics Program, Arizona State University, Tempe, Arizona

Search for other papers by Ronald Calhoun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25–100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%–15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

Corresponding author address: Dr. Y. Wang, U.S. Army Research Laboratory, ATTN: AMSRD-ARL-CI-EM, 2800 Powder Mill Rd., Adelphi, MD 20783. Email: ywang@arl.army.mil

This article included in the Urban 2003 Experiment (JU2003) special collection.

Abstract

Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25–100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%–15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

Corresponding author address: Dr. Y. Wang, U.S. Army Research Laboratory, ATTN: AMSRD-ARL-CI-EM, 2800 Powder Mill Rd., Adelphi, MD 20783. Email: ywang@arl.army.mil

This article included in the Urban 2003 Experiment (JU2003) special collection.

Save
  • Allwine, K. J., M. J. Leach, L. W. Stockham, J. S. Shinn, R. P. Hosker, J. F. Bowers, and J. C. Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone and Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., J7.1.

  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. D. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60 , 25492555.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., R. M. Banta, S. P. Burns, D. C. Fritts, R. K. Newsom, G. S. Poulos, and J. Sun, 2001: Turbulence statistics of a Kelvin–Helmholtz billow event observed in the nighttime boundary layer during the CASES-99 field program. Dyn. Atmos. Oceans, 34 , 189204.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96 , 833850.

  • Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7 , 575582.

  • Bornstein, R. D., and D. S. Johnson, 1977: Urban–rural wind velocity differences. Atmos. Environ., 11 , 597604.

  • Bowen, B. M., 1996: Example of reduced turbulence during thunderstorm outflow. J. Appl. Meteor., 35 , 10281032.

  • Brown, M. J., 2001: Urban parameterization for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, Z. Boybeyi, Ed., Advances in Air Pollution Series, Vol. 9, WIT Press, 192–255.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Search Google Scholar
    • Export Citation
  • Burian, S. J., W. S. Han, and M. J. Brown, 2003: Morphological analyses using 3D building databases: Oklahoma City, Oklahoma. Los Alamos National Laboratory Rep. LA-UR-02-0781, 63 pp.

  • Calhoun, R., R. Heap, M. Princevac, R. Newsom, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45 , 11161126.

    • Search Google Scholar
    • Export Citation
  • Ching, J. K. S., 1985: Urban-scale variations of turbulence parameters and fluxes. Bound.-Layer Meteor., 33 , 335361.

  • De Wekker, S. F. J., L. K. Berg, J. Allwine, J. C. Doran, and W. J. Shaw, 2004: Boundary-layer structure upwind and downwind of Oklahoma City during the Joint Urban 2003 field study. Preprints. Fifth Conf. on Urban Environment, Vancouver, BC, Canada, Amer. Meteor. Soc., CD-ROM, 3.20.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., T. L. Otte, and J. K. S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5). Bound.-Layer Meteor., 113 , 111158.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., S. M. Hannon, and S. W. Henderson, 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol., 11 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., S. M. Hannon, and S. W. Henderson, 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86 , 233256.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., B. W. Orr, and B. E. Martner, 1992: Doppler radar observations of the development of a boundary-layer nocturnal jet. Mon. Wea. Rev., 120 , 316.

    • Search Google Scholar
    • Export Citation
  • Godowitch, J. M., 1986: Characteristics of vertical turbulent velocities in the urban convective boundary layer. Bound.-Layer Meteor., 35 , 387407.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38 , 12621292.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Search Google Scholar
    • Export Citation
  • Hoecker Jr., W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special Pibal network of 1961. Mon. Wea. Rev., 91 , 573582.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19 , 199205.

  • Jackson, P. S., 1978: Wind structure near a city center. Bound.-Layer Meteor., 15 , 323340.

  • Lundquist, J. K., and J. D. Mirocha, 2006: Interaction of nocturnal low-level jets with urban geometries as seen in Joint URBAN 2003 data. Preprints, Sixth Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, J5.10.

  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11 , 263280.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105 , 351363.

  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104 , 261304.

    • Search Google Scholar
    • Export Citation
  • Morse, C. S., R. K. Goodrich, and L. B. Cornman, 2002: The NIMA method for improved moment estimation from Doppler spectra. J. Atmos. Oceanic Technol., 19 , 274295.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdowns of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54 , 6987.

  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60 , 1633.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1976: The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14 , 268277.

  • Oke, T. R., 1987: Boundary Layer Climates. 2d ed. Methuen, 435 pp.

  • Rotach, M. W., 1995: Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ., 29 , 14731486.

  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126 , 941990.

  • Roth, M., and T. R. Oke, 1995: Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J. Atmos. Sci., 52 , 18631874.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Intermittent turbulence in stable boundary layers and the processes that generate it. Bound.-Layer Meteor., 107 , 255279.

    • Search Google Scholar
    • Export Citation
  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38 , 466473.

    • Search Google Scholar
    • Export Citation
  • Uno, I., S. Wakamatsu, H. Ueda, and A. Nakamura, 1988: An observational study of the structure of the nocturnal urban boundary layer. Bound.-Layer Meteor., 45 , 5982.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14 , 512526.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20 , 660672.

  • Wang, Y., C. Williamson, D. Garvey, S. Chang, and J. Cogan, 2005: Application of a multigrid method to a mass-consistent diagnostic wind model. J. Appl. Meteor., 44 , 10781089.

    • Search Google Scholar
    • Export Citation
  • Westcott, N., 1989: Influence of mesoscale winds on the turbulent structure of the urban boundary layer over St. Louis. Bound.-Layer Meteor., 48 , 283292.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124 , 785806.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1222 486 165
PDF Downloads 413 102 7