Abstract
Data obtained in downtown Oklahoma City, Oklahoma, during the Joint Urban 2003 atmospheric dispersion study have been analyzed to investigate the effects of upstream atmospheric stability on turbulence statistics in an urban core. The data presented include turbulent heat and momentum fluxes at various vertical and horizontal locations in the lower 30% of the street canyon. These data have been segregated into three broad stability classification regimes: stable (z/L > 0.2), neutral (−0.2 < z/L < 0.2), and unstable (z/L < −0.2) based on upstream measurements of the Monin–Obukhov length scale L. Most of the momentum-related turbulence statistics were insensitive to upstream atmospheric stability, while the energy-related statistics (potential temperatures and kinematic heat fluxes) were more sensitive. In particular, the local turbulence intensity inside the street canyon varied little with atmospheric stability but always had large magnitudes. Measurements of turbulent momentum fluxes indicate the existence of regions of upward transport of high horizontal momentum fluid near the ground that is associated with low-level jet structures for all stabilities. The turbulent kinetic energy normalized by a local shear stress velocity collapses the data well and shows a clear repeatable pattern that appears to be stability invariant. The magnitude of the normalized turbulent kinetic energy increases rapidly as the ground is approached. This behavior is a result of a much more rapid drop in the correlation between the horizontal and vertical velocities than in the velocity variances. This lack of correlation in the turbulent momentum fluxes is consistent with previous work in the literature. It was also observed that the mean potential temperatures almost always decrease with increasing height in the street canyon and that the vertical heat fluxes are always positive regardless of upstream atmospheric stability. In addition, mean potential temperature profiles are slightly more unstable during the unstable periods than during the neutral or stable periods. The magnitudes of all three components of the heat flux and the variability of the heat fluxes decrease with increasing atmospheric stability. In addition, the cross-canyon and along-canyon heat fluxes are as large as the vertical component of the heat fluxes in the lower portion of the canyon.
Corresponding author address: E. R. Pardyjak, Dept. of Mechanical Engineering, University of Utah, 50 S. Central Campus Dr., Salt Lake City, UT 84112. Email: pardyjak@eng.utah.edu
This article included in the Urban 2003 Experiment (JU2003) special collection.