• Armienti, P., , G. Macedonio, , and M. T. Pareschi, 1988: A numerical-model for simulation of tephra transport and deposition—Applications to May 18, 1980, Mount St. Helens eruption. J. Geophys. Res., 93 , 64636476.

    • Search Google Scholar
    • Export Citation
  • Barberi, F., , G. Macedonio, , M. T. Pareschi, , and R. Santacroce, 1990: Mapping the tephra fallout risk: An example from Vesuvius, Italy. Nature, 344 , 142144.

    • Search Google Scholar
    • Export Citation
  • Baxter, P. J., 1990: Medical effects of volcanic eruptions. I. Main causes of death and injury. Bull. Volcanol., 52 , 532544.

  • Bonadonna, C., , and J. C. Phillips, 2003: Sedimentation from strong volcanic plumes. J. Geophys. Res., 108 .2340, doi:10.1029/2002JB002034.

    • Search Google Scholar
    • Export Citation
  • Bonadonna, C., , G. Macedonio, , and R. S. J. Sparks, 2002: Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: Application to hazard assessment on Montserrat. The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, T. H. Druitt and B. P. Kokelaar, Eds., Geological Society, 517–537.

    • Search Google Scholar
    • Export Citation
  • Bonadonna, C., , C. B. Connor, , B. F. Houghton, , L. Connor, , M. Byrne, , A. G. Laing, , and T. K. Hincks, 2005: Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J. Geophys. Res., 110 .B03203, doi:10.1029/2003JB002896.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., , J. J. Orlando, , and G. S. Tyndall, Eds. 1999: Atmospheric Chemistry and Global Change. Oxford University Press, 654 pp.

  • Bursik, M., 1998: Tephra dispersal. The Physics of Explosive Volcanic Eruptions, J. S. Gilbert and R. S. J. Sparks, Eds., Geological Society of London Special Publication 145, 115–144.

  • Byrne, M. A., 2005: Mapping the major axis of dispersion with a mesoscale atmospheric model: Cerro Negro volcano, Nicaragua. M.A. thesis, Department of Geography, University of South Florida, 102 pp.

  • Carey, S. N., , and H. Sigurdsson, 1982: Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens Volcano. J. Geophys. Res., 87 , 70617072.

    • Search Google Scholar
    • Export Citation
  • Casadevall, T. J., Ed. 1994: Volcanic ash and aviation safety: Proceedings of the first international symposium on volcanic ash and aviation safety. USGS Bulletin 2047, 450 pp.

  • Connor, C. B., , B. E. Hill, , B. Winfrey, , N. M. Franklin, , and P. C. La Femina, 2001: Estimation of volcanic hazards from tephra fallout. Nat. Hazards Rev., 2 , 3342.

    • Search Google Scholar
    • Export Citation
  • Cox, R. M., , J. Sontowski, , R. N. Fry Jr., , C. M. Dougherty, , and T. J. Smith, 1998: Wind and diffusion modeling for complex terrain. J. Appl. Meteor., 37 , 9961009.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and G. D. Hess, 1997: Description of the Hysplit_4 modelling system. NOAA Tech. Memo. ERL ARL-224, 24 pp.

  • Ernst, G. G. J., , J. P. Davis, , and R. S. J. Sparks, 1994: Bifurcation of volcanic plumes in a crosswind. Bull. Volcanol., 56 , 159169.

  • Ferretti, R., , T. Paolucci, , G. Giuliani, , T. Cherubini, , L. Bernardini, , and G. Visconti, 2003: Verification of high-resolution real-time forecasts over the Alpine region during the MAP SOP. Quart. J. Roy. Meteor. Soc., 129 , 587607.

    • Search Google Scholar
    • Export Citation
  • Glaze, L. S., , and S. Self, 1991: Ashfall dispersal for the 16 September 1986, eruption of Lascar, Chile, calculated by a turbulent-diffusion model. Geophys. Res. Lett., 18 , 12371240.

    • Search Google Scholar
    • Export Citation
  • Global Volcanism Network, 1995: Cerro Negro, Nicaragua. Bulletin of the Global Volcanism Network, Vol. 20, No. 2, 2–4.

  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, 122 pp.

  • Grell, G. A., , S. Emeis, , W. R. Stockwell, , T. Schoenemeyer, , R. Forkel, , J. Michalakes, , R. Knoche, , and W. Seidl, 2000: Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos. Environ., 34 , 14351453.

    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., , and B. J. B. Stunder, 1993: Volcanic Ash Forecast Transport and Dispersion (VAFTAD) Model. Wea. Forecasting, 8 , 533541.

    • Search Google Scholar
    • Export Citation
  • Herzog, M., , J. M. Oberhuber, , and H. Graf, 2003: A prognostic turbulence scheme for the nonhydrostatic plume model ATHAM. J. Atmos. Sci., 60 , 27832796.

    • Search Google Scholar
    • Export Citation
  • Hill, B. E., , C. B. Connor, , M. S. Jarzemba, , P. C. La Femina, , M. Navarro, , and W. Strauch, 1998: 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol. Soc. Amer. Bull., 110 , 12311241.

    • Search Google Scholar
    • Export Citation
  • Hurst, A. W., , and R. Turner, 1999: Performance of the program ASHFALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano. N. Z. J. Geol. Geophys., 42 , 615622.

    • Search Google Scholar
    • Export Citation
  • In, H., , and S. Park, 2002: A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea. Atmos. Environ., 36 , 41734187.

    • Search Google Scholar
    • Export Citation
  • Iverson, R. M., 1997: The physics of debris flows. Rev. Geophys., 35 , 245296.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kitada, T., , and R. P. Regmi, 2003: Dynamics of air pollution transport in late wintertime over Kathmandu Valley, Nepal: As revealed with numerical simulation. J. Appl. Meteor., 42 , 17701798.

    • Search Google Scholar
    • Export Citation
  • Latter, J. H., Ed. 1989: Volcanic Hazards: Assessment and Monitoring. Springer-Verlag, 625 pp.

  • Macedonio, G., , R. Santacroce, , P. Papale, , M. T. Pareschi, , and M. Rosi, 1994: A statistical approach in the assessment of volcanic hazard for air traffic: Application to Vesuvius, Italy. Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety, T. J. Casadevall, Ed., USGS Bulletin 2047, 245–252.

  • Newhall, C. G., , and S. Self, 1982: The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. J. Geophys. Res., 87 , 12311238.

    • Search Google Scholar
    • Export Citation
  • Newhall, C. G., , and R. S. Punongbayan, Eds. 1996: Fire and Mud—Eruptions and Lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology and the University of Washington Press, 1126 pp.

  • Oppenheimer, C., 1998: Volcanological applications of meteorological satellites. Int. J. Remote Sens., 19 , 28292864.

  • Rife, D. L., , C. A. Davis, , Y. Liu, , and T. T. Warner, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132 , 25532569.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2002: Pinatubo eruption: The climatic aftermath. Science, 295 , 12421244.

  • Salvador, R., , J. Calbo, , and M. M. Millan, 1999: Horizontal grid size selection and its influence on mesoscale model simulations. J. Appl. Meteor., 38 , 13111329.

    • Search Google Scholar
    • Export Citation
  • Scott, W. E., , R. M. Iverson, , J. W. Vallance, , and W. Hildreth, 1995: Volcano hazards in the Mount Adams region, Washington. USGS Open-File Rep. 95-492, 11 pp.

  • Searcy, C., , K. Dean, , and W. Stringer, 1998: PUFF: A high-resolution volcanic ash tracking model. J. Volcanol. Geotherm. Res., 80 , 116.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., , J. S. Berg, , C. Bauer, , G. L. Hufford, , D. Pieri, , and R. Servranckx, 2002: The February 2001 eruption of Mount Cleveland, Alaska: Case study of an aviation hazard. Wea. Forecasting, 17 , 691704.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., 1983: A theoretical model for dispersion of tephra. Arc Volcanism, Physics and Tectonics, D. Shimozuru and I. Yokoyama, Eds., TERRAPUB, 95–113.

    • Search Google Scholar
    • Export Citation
  • Tilling, R. I., , C. Heliker, , and T. L. Wright, 1987: Eruptions of Hawaiian volcanoes: Past, present, and future. USGS Special Interest Publication, 54 pp.

  • Tupper, A., , S. Carn, , J. Davey, , Y. Kamada, , R. Potts, , F. Prata, , and M. Tokuno, 2004: An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western “Ring of Fire.”. Remote Sens. Environ., 91 , 2746.

    • Search Google Scholar
    • Export Citation
  • Turner, R., , and T. Hurst, 2001: Factors influencing volcanic ash dispersal from the 1995 and 1996 eruptions of Mount Ruapehu, New Zealand. J. Appl. Meteor., 40 , 5669.

    • Search Google Scholar
    • Export Citation
  • Veitch, G., , and A. W. Woods, 2001: Particle aggregation in volcanic eruption columns. J. Geophys. Res., 106 , 2642526441.

  • Warner, T., , B. E. Mapes, , and M. Xu, 2003: Diurnal patterns of rainfall in Northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131 , 813829.

    • Search Google Scholar
    • Export Citation
  • White, G. B., , J. Peagle, , W. J. Steenburgh, , J. D. Horel, , R. T. Swanson, , L. K. Cook, , D. J. Onton, , and J. G. Miles, 1999: Short-term forecast validation of six models. Wea. Forecasting, 14 , 84108.

    • Search Google Scholar
    • Export Citation
  • Wolfe, E. W., 1992: The 1991 eruptions of Mount Pinatubo. Earthquakes Volcanoes, 23 , 537.

  • Zängl, G., 2002: Stratified flow over a mountain with a gap: Linear theory and numerical simulations. Quart. J. Roy. Meteor. Soc., 128 , 927949.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 1
PDF Downloads 15 15 1

Predicting Tephra Dispersion with a Mesoscale Atmospheric Model and a Particle Fall Model: Application to Cerro Negro Volcano

View More View Less
  • 1 Department of Geography, University of South Florida, Tampa, Florida
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Department of Geology, University of South Florida, Tampa, Florida
© Get Permissions
Restricted access

Abstract

Models of volcanic ash (tephra) fallout are increasingly used to assess volcanic hazards in advance of eruptions and in near–real time. These models often approximate the wind field using simplistic assumptions of the atmosphere that do not account for four-dimensional variations in wind velocity. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) is used to improve forecasts of tephra dispersion. MM5 is a 3D model that can predict circulations in areas with sparse meteorological observations and complex terrain, such as volcanic plateaus. MM5 is applied to the 1995 eruption of Cerro Negro, Nicaragua. Validation of MM5 is achieved by comparing the simulated winds with rawinsonde observations. Estimates of diffusivity and particle settling velocities are used in conjunction with MM5-generated wind fields to forecast the major axes of the tephra dispersion. The predicted axes of dispersion derived from the MM5 winds approximate very closely the observed bilobate tephra accumulation and tephra plumes observed in satellite images. MM5 winds provide far more accurate spatial and temporal forecasts than do the wind assumptions that had been used previously to assess Cerro Negro tephra hazard.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Arlene Laing, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307. Email: laing@ucar.edu

Abstract

Models of volcanic ash (tephra) fallout are increasingly used to assess volcanic hazards in advance of eruptions and in near–real time. These models often approximate the wind field using simplistic assumptions of the atmosphere that do not account for four-dimensional variations in wind velocity. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) is used to improve forecasts of tephra dispersion. MM5 is a 3D model that can predict circulations in areas with sparse meteorological observations and complex terrain, such as volcanic plateaus. MM5 is applied to the 1995 eruption of Cerro Negro, Nicaragua. Validation of MM5 is achieved by comparing the simulated winds with rawinsonde observations. Estimates of diffusivity and particle settling velocities are used in conjunction with MM5-generated wind fields to forecast the major axes of the tephra dispersion. The predicted axes of dispersion derived from the MM5 winds approximate very closely the observed bilobate tephra accumulation and tephra plumes observed in satellite images. MM5 winds provide far more accurate spatial and temporal forecasts than do the wind assumptions that had been used previously to assess Cerro Negro tephra hazard.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Arlene Laing, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307. Email: laing@ucar.edu

Save