• Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32 , 116125.

  • Banta, R. M., 1995: Sea breezes shallow and deep on the California coast. Mon. Wea. Rev., 123 , 36143622.

  • Bastin, S., , and P. Drobinski, 2005: Temperature and wind velocity oscillations along a gentle slope during sea-breeze events. Bound.-Layer Meteor., 114 , 573594.

    • Search Google Scholar
    • Export Citation
  • Bastin, S., , and P. Drobinski, 2006: Sea breeze induced mass transport over complex terrain in southeastern France: A case study. Quart. J. Roy. Meteor. Soc., 132 , 405423.

    • Search Google Scholar
    • Export Citation
  • Bastin, S., , C. Champollion, , O. Bock, , P. Drobinski, , and F. Masson, 2005: On the use of GPS tomography to investigate water vapor variability during a mistral/sea breeze event in southeastern France. Geophys. Res. Lett., 32 .L05808, doi:10.1029/2004GL021907.

    • Search Google Scholar
    • Export Citation
  • Bastin, S., and Coauthors, 2006: On the interaction between sea breeze and summer mistral at the exit of the Rhône valley. Mon. Wea. Rev., 134 , 16471668.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., , S. Businger, , T. Herring, , C. Rocken, , R. A. Anthes, , and R. H. Ware, 1992: GPS meteorology: Remote sensing of the atmospheric water vapor using the global positioning system. J. Geophys. Res., 97 , 1578715801.

    • Search Google Scholar
    • Export Citation
  • Bock, O., and Coauthors, 2004: GPS water vapor tomography project: Description and first results of the ESCOMPTE field experiment. Phys. Chem. Earth, 29 , 149157.

    • Search Google Scholar
    • Export Citation
  • Champollion, C., , F. Masson, , M. N. Bouin, , A. Walpersdorf, , E. Doerflinger, , O. Bock, , and J. Van Baelen, 2005: GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res., 74 , 253274.

    • Search Google Scholar
    • Export Citation
  • Cros, B., and Coauthors, 2004: The ESCOMPTE program: An overview. Atmos. Res., 69 , 241279.

  • Davis, J. L., , T. H. Herring, , I. I. Shapiro, , A. E. E. Rogers, , and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimation of baseline length. Radio Sci., 20 , 15931607.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2005: Summer mistral at the exit of the Rhône valley. Quart. J. Roy. Meteor. Soc., 131 , 353375.

  • Elgered, G., 1993: Tropospheric radio path delay from ground-based microwave radiometry. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., John Wiley and Sons, 215–258.

    • Search Google Scholar
    • Export Citation
  • Elòsegui, P., , J. L. Davis, , L. P. Gradinarsky, , G. Elgered, , J. M. Johansson, , D. A. Tahmoush, , and A. Rius, 1999: Sensing atmospheric structure using small-scale space geodetic networks. Geophys. Res. Lett., 26 , 24452448.

    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., , and H. J. P. Derks, 1999: On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteor. Appl., 6 , 112.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., , and J. Beavan, 2002: The impact of GPS precipitable water assimilation on mesoscale model retrievals of orographic rainfall during SALPEX’96. Mon. Wea. Rev., 130 , 28742888.

    • Search Google Scholar
    • Export Citation
  • Flores, A., , G. Ruffini, , and A. Rius, 2000: 4D tropospheric tomography using GPS wet slant delays. Ann. Geophys., 18 , 223234.

  • Foelsche, U., , and G. Kirchengast, 2001: Tropospheric water vapor imaging by combination of ground-based and spaceborne GNSS sounding data. J. Geophys. Res., 106 , 2722127231.

    • Search Google Scholar
    • Export Citation
  • Gradinarsky, L., 2002: Sensing atmospheric water vapor using radio waves. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden (Tech. Rep. 436).

  • Guénard, V., , P. Drobinski, , J-L. Caccia, , B. Campistron, , and B. Bénech, 2005: Experimental investigation of the mesoscale dynamics of the mistral. Bound.-Layer Meteor., 115 , 263288.

    • Search Google Scholar
    • Export Citation
  • Haase, J., , M. Ge, , H. Vedel, , and E. Calais, 2003: Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteor., 42 , 15471568.

    • Search Google Scholar
    • Export Citation
  • Jànsa, A., 1987: Distribution of the mistral: A satellite observation. Meteor. Atmos. Phys., 36 , 201214.

  • Jarlemark, P., , J. Johansson, , B. Stoew, , L. Gradinarsky, , and G. Elgered, 2001: Spatial error correlations of GPS atmospheres as determined from simulations. Phys. Chem. Earth, 26 , A6–8. 451456.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., , R. B. Smith, , and J. D. Doyle, 2003: The nature of the mistral: Observations and modeling of two MAP events. Quart. J. Roy. Meteor. Soc., 129 , 857876.

    • Search Google Scholar
    • Export Citation
  • Kambezidis, H. D., , D. Weidauer, , D. Melas, , and M. Ulbricht, 1998: Air quality in the Athens basin during sea-breeze and non-sea breeze days using laser-remote-sensing technique. Atmos. Environ., 32 , 21732182.

    • Search Google Scholar
    • Export Citation
  • King, J. A., , F. H. Shair, , and D. D. Reible, 1987: The influence of atmospheric stability on pollutant transport by slope winds. Atmos. Environ., 21 , 5359.

    • Search Google Scholar
    • Export Citation
  • Koo, Y. S., , and D. D. Reible, 1995: Flow and transport modeling in the sea breeze. Part II: Flow model application and pollutant transport. Bound.-Layer Meteor., 75 , 209234.

    • Search Google Scholar
    • Export Citation
  • Kossmann, M., , U. Corsmeier, , S. F. J. De Wekker, , F. Fiedler, , R. Vogtlin, , N. Kalthoff, , H. Gusten, , and B. Neininger, 1999: Observations of handover processes between the atmospheric boundary-layer and the free troposphere over mountainous terrain. Contrib. Atmos. Phys., 72 , 329350.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., , S. Bastin, , V. Masson, , and P. Drobinski, 2006: Vertical structure of the urban boundary layer over Marseille under sea breeze condition. Bound.-Layer Meteor., 118 , 477501.

    • Search Google Scholar
    • Export Citation
  • Leveque, J-J., , and F. Masson, 1999: From ACH tomographic models to absolute velocity models. Geophys. J. Int., 137 , 621629.

  • MacDonald, A. E., , Y. Xie, , and R. Ware, 2002: Diagnosis of three-dimensional water vapor using a GPS network. Mon. Wea. Rev., 130 , 386397.

    • Search Google Scholar
    • Export Citation
  • Mayençon, R., 1982: Météorologie Pratique. Editions Maritimes et d’Outre-Mer, 336 pp.

  • Niell, A. E., , A. J. Coster, , F. S. Solheim, , V. B. Mendes, , P. C. Toor, , R. B. Langley, , and C. A. Upham, 2001: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., 18 , 830850.

    • Search Google Scholar
    • Export Citation
  • Pettré, P., 1982: On the problem of violent valley winds. J. Atmos. Sci., 39 , 542554.

  • Shoji, Y., and Coauthors, 2004: Tsukuba GPS dense net campaign observation: Improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J. Meteor. Soc. Japan, 82 , 301314.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1994: Sea Breeze and Local Winds. Cambridge University Press, 234 pp.

  • Walpersdorf, A., , O. Bock, , E. Doerflinger, , F. Masson, , J. Van-Baelen, , A. Somieski, , and B. Bürki, 2004: Data analysis of a dense GPS network operated during the ESCOMPTE campaign: First results. Phys. Chem. Earth, 29 , 201211.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 3
PDF Downloads 20 20 1

Diurnal Cycle of Water Vapor as Documented by a Dense GPS Network in a Coastal Area during ESCOMPTE IOP2

View More View Less
  • 1 Institut Pierre Simon Laplace/Service d’Aéronomie, Université Pierre et Marie Curie, Paris, France
  • | 2 Laboratoire de Dynamique de la Lithosphère, Université Montpellier II, Montpellier, France
  • | 3 Institut Pierre Simon Laplace/Service d’Aéronomie, Université Pierre et Marie Curie, Paris, France
  • | 4 Laboratoire de Dynamique de la Lithosphère, Université Montpellier II, Montpellier, France
© Get Permissions
Restricted access

Abstract

Global positioning system (GPS) data from a dense network have been used for the analysis of the diurnal cycle of water vapor over Marseille, France, during the second intensive observation period (IOP2; 21–26 June 2001) of the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d’Emission (ESCOMPTE) field experiment. Both tomographic analyses and integrated water vapor (IWV) contents from GPS have been used, in addition to wind profiler data and surface observations. Tomographic analysis of data from the dense GPS network and radiosondes provided the continuous temporal evolution of the vertical distribution of water vapor over the city of Marseille. The city is located on the shore of the Mediterranean Sea in southeastern France and is often under the influence of sea-breeze effects. Two different layers of breeze circulation are identified: a shallow sea breeze, blowing perpendicular to the local coastline, and a deep sea breeze, induced by the regional temperature gradient between sea and land. The origin of water vapor is shown to be mainly due to the advection of marine moist air by these sea-breeze circulations. However, the diurnal cycle of water vapor over Marseille is strongly influenced by the synoptic situation, which changes during the IOP2 (between a northerly mistral in the early stage of the IOP and an easterly wind at the end). It is shown that vertical profiles from tomographic analyses (combined with wind profiler data) allow for a proper interpretation of the diurnal cycle observed in IWV. Two-dimensional maps of IWV are also shown to complement the description of the horizontal advection of moisture by the different circulation regimes.

Corresponding author address: Dr. Sophie Bastin, IPSL/Service d’Aéronomie, Université Pierre et Marie Curie, Boite 102, Tour 45-46, 3eme étage, 4 place Jussieu, 75252 Paris, CEDEX 05, France. Email: sophie.bastin@aero.jussieu.fr

Abstract

Global positioning system (GPS) data from a dense network have been used for the analysis of the diurnal cycle of water vapor over Marseille, France, during the second intensive observation period (IOP2; 21–26 June 2001) of the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d’Emission (ESCOMPTE) field experiment. Both tomographic analyses and integrated water vapor (IWV) contents from GPS have been used, in addition to wind profiler data and surface observations. Tomographic analysis of data from the dense GPS network and radiosondes provided the continuous temporal evolution of the vertical distribution of water vapor over the city of Marseille. The city is located on the shore of the Mediterranean Sea in southeastern France and is often under the influence of sea-breeze effects. Two different layers of breeze circulation are identified: a shallow sea breeze, blowing perpendicular to the local coastline, and a deep sea breeze, induced by the regional temperature gradient between sea and land. The origin of water vapor is shown to be mainly due to the advection of marine moist air by these sea-breeze circulations. However, the diurnal cycle of water vapor over Marseille is strongly influenced by the synoptic situation, which changes during the IOP2 (between a northerly mistral in the early stage of the IOP and an easterly wind at the end). It is shown that vertical profiles from tomographic analyses (combined with wind profiler data) allow for a proper interpretation of the diurnal cycle observed in IWV. Two-dimensional maps of IWV are also shown to complement the description of the horizontal advection of moisture by the different circulation regimes.

Corresponding author address: Dr. Sophie Bastin, IPSL/Service d’Aéronomie, Université Pierre et Marie Curie, Boite 102, Tour 45-46, 3eme étage, 4 place Jussieu, 75252 Paris, CEDEX 05, France. Email: sophie.bastin@aero.jussieu.fr

Save