Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE

M. Chiriaco Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France

Search for other papers by M. Chiriaco in
Current site
Google Scholar
PubMed
Close
,
H. Chepfer Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France

Search for other papers by H. Chepfer in
Current site
Google Scholar
PubMed
Close
,
P. Minnis NASA Langley Research Center, Hampton, Virginia

Search for other papers by P. Minnis in
Current site
Google Scholar
PubMed
Close
,
M. Haeffelin Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France

Search for other papers by M. Haeffelin in
Current site
Google Scholar
PubMed
Close
,
S. Platnick NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by S. Platnick in
Current site
Google Scholar
PubMed
Close
,
D. Baumgardner Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by D. Baumgardner in
Current site
Google Scholar
PubMed
Close
,
P. Dubuisson ELICO, Université du Littoral, Dunkerque, France

Search for other papers by P. Dubuisson in
Current site
Google Scholar
PubMed
Close
,
M. McGill NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by M. McGill in
Current site
Google Scholar
PubMed
Close
,
V. Noël NASA Langley Research Center, Hampton, Virginia

Search for other papers by V. Noël in
Current site
Google Scholar
PubMed
Close
,
J. Pelon Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France

Search for other papers by J. Pelon in
Current site
Google Scholar
PubMed
Close
,
D. Spangenberg NASA Langley Research Center, Hampton, Virginia

Search for other papers by D. Spangenberg in
Current site
Google Scholar
PubMed
Close
,
S. Sun-Mack NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by S. Sun-Mack in
Current site
Google Scholar
PubMed
Close
, and
G. Wind Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by G. Wind in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.

Corresponding author address: Marjolaine Chiriaco, Laboratoire de Météorologie Dynamique/IPSL, Ecole Polytechnique, 91128 Palaiseau CEDEX, France. Email: chiriaco@lmd.polytechnique.fr

Abstract

This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.

Corresponding author address: Marjolaine Chiriaco, Laboratoire de Météorologie Dynamique/IPSL, Ecole Polytechnique, 91128 Palaiseau CEDEX, France. Email: chiriaco@lmd.polytechnique.fr

Save
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear-sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132158.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845.

  • Baran, A. J., P. D. Watts, and P. N. Francis, 1999: Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements. J. Geophys. Res., 104 , 3167331683.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., S. Havemann, P. N. Francis, and P. D. Watts, 2003: A consistent set of single-scattering properties for cirrus cloud: tests using radiance measurements from a dual-viewing multi-wavelength satellite-based instrument. J. Quant. Spectrosc. Radiat. Transfer, 79–80 , 549567.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. II. Cloud thermodynamic phase. J. Geophys. Res., 105 , 1178111792.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60 , 251264.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Chepfer, G. B. Raga, and G. L. Kok, 2005: The shapes of very small cirrus particles derived from in situ measurements. Geophys. Res. Lett., 32 .L01806, doi:10.1029/2004GL021300.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, 1999: Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: Application to spaceborne and airborne backscatter lidar measurements during LITE mission and E LITE campaign. Geophys. Res. Lett., 26 , 22032206.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noël, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and 3-channel radiometric techniques. Mon. Wea. Rev., 132 , 16841700.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noël, M. Haeffelin, and P. Drobinski, 2006: Dual lidar observations at 10.6 μm and 532 nm for retrieving semitransparent cirrus cloud properties. J. Appl. Meteor. Climatol., 45 , 537555.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538547.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., J. C. Buriez, and Y. Fouquart, 1996: High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulation. J. Quant. Spectrosc. Radiat. Transfer, 55 , 103126.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer, and J. Pelon, 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95 , 201220.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23 , 253275.

    • Search Google Scholar
    • Export Citation
  • Havemann, S., and A. J. Baran, 2001: Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetrics dielectric particles: Application to hexagonal cylinder. J. Quant. Spectrosc. Radiat. Transfer, 70 , 139158.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32 , 799807.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1993: Microphysical structure of stratiform and cirrus clouds. Aerosol Cloud Climate Interactions, P. V. Hobbs, Ed., International Geophysics Series, Vol. 54, Academic Press.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Intrieri, J., G. L. Stephens, W. L. Eberhard, and T. Uttal, 1993: A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique. J. Appl. Meteor., 32 , 10741082.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., W. L. Eberhard, T. Uttal, J. A. Shaw, J. B. Snider, Y. Han, B. W. Orr, and S. Y. Matrosov, 1995: Multiwavelength observations of a developing cloud system: The FIRE II 26 November 1991 case study. J. Atmos. Sci., 52 , 40794093.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., D. Starr, and O. B. Toon, 2004: Mission investigates tropical cirrus clouds. Eos, Trans. Amer. Geophys. Union, 85 , 4550.

  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21 , 857875.

    • Search Google Scholar
    • Export Citation
  • Krupp, C., 1991: Holographic measurements of ice crystals in cirrus clouds during the International Cloud Experiment ICE 1989. Report of the Fourth ICE/EUCREX Workshop, Lille, France, Laboratoire d’Optique Atmosphérique, USTL.

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Mace, G. G., K. Sassen, S. Kinne, and T. P. Ackerman, 1998: An examination of cirrus cloud characteristics using data from millimeter wave radar and lidar: The 24 April SUCCESS case study. Geophys. Res. Lett., 25 , 11331136.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang, 2005: Evaluation of cirrus cloud properties derived from MODIS data using cloud properties derived from ground-based observations collected at the ARM SGP site. J. Appl. Meteor., 44 , 221240.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53 , 28132825.

  • Matrosov, S. Y., 1999: Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters. J. Geophys. Res., 104 , 1674116753.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53 , 24012423.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22 , 377384.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 1995: Cloud optical property retrieval (subsystem 4.3). Clouds and the Earth’s Radiant Energy System (CERES) algorithm theoretical basis document, volume III: Cloud analyses and radiance inversions (subsystem 4), NASA Rep. RP 1376, Vol. 3, 135–176.

  • Minnis, P., D. P. Garber, and D. F. Young, 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55 , 33133339.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., Y. Yi, J. Huang, and J. K. Ayers, 2005: Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data. J. Geophys. Res., 110 .D23204, doi:10.1029/2005JD006005.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Amer., 8A , 871882.

  • Noel, V., H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, 2002: Classification of particle effective shape ratios in cirrus clouds based on lidar depolarization ratio. Appl. Opt., 41 , 42454257.

    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and S. Twomey, 1987: Discrimination of ice from water in clouds by optical remote sensing. Atmos. Res., 21 , 113122.

  • Platnick, S., M. D. King, H. Gerber, and P. V. Hobbs, 2001: A solar reflectance technique for cloud retrievals over snow and ice surfaces. J. Geophys. Res., 106 , 1518515199.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30 , 11911204.

  • Platt, C. M. R., J. D. Spinhirne, and W. D. Hart, 1989: Optical and microphysical properties of a cold cirrus cloud: Evidence for regions of small particles. J. Geophys. Res., 94 , 1115111164.

    • Search Google Scholar
    • Export Citation
  • Radel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell, 2003: Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical Sounder. J. Geophys. Res., 108 .4281, doi:10.1029/2002JD002801.

    • Search Google Scholar
    • Export Citation
  • Randall, D., B. Albrecht, S. Cox, D. Johnson, P. Minnis, W. Rossow, and D. Starr, 1996: On FIRE at ten. Advances in Geophysics, Vol. 38 .Academic Press.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., J. Schmetz, J. Heitzenberg, R. Kandel, and R. Saunders, 1990: The International Cirrus Experiment (ICE): A joint European effort. ESA J., 14 , 193199.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., P. H. Flamant, Y. Fouquart, P. Hignet, H. Hisaka, P. R. Jonas, H. Sundquist, and P. Wendling, 1998: Cloud-radiation studies during the European Cloud Radiation Experiment (EUCREX). Surv. Geophys., 19 , 89138.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J-H. Chae, P. Minnis, and M. McGill, 2004: Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett., 31 .L11102, doi:10.1029/2004GL019699.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46 , 318.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and R. C. Miake-Lye, 1998: Contrails and Cloud Effects Special Study (SUCCESS). Geophys. Res. Lett., 25 , 11091112.

  • Trepte, Q., P. Minnis, and R. F. Arduini, 2002: Daytime and nighttime polar cloud and snow identification using MODIS data. Optical Remote Sensing of the Atmosphere and Clouds III, H.-L. Huang, D. Lu, and Yasuhiro Sasano, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4891), 449–459.

    • Search Google Scholar
    • Export Citation
  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18 , 26632671.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4893), 1–11.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer., 13 , 20722085.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996b: Geometric optics integral equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35 , 65686584.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, M. I. Mishchenko, and B-C. Gao, 2000: An efficient finite difference time domain scheme for light scattering by dielectric particles: Application to aerosols. Appl. Opt., 39 , 37273737.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S. Tsay, and D. M. Winker, 2001: Radiative properties of cirrus clouds in the infrared (8-13μm) spectral region. J. Quant. Spectrosc. Radiat. Transer, 70 , 473504.

    • Search Google Scholar
    • Export Citation
  • Young, A. T., 1980: Revised depolarization corrections for atmospheric extinction. Appl. Opt., 19 , 34273428.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 773 587 300
PDF Downloads 178 103 3