Low-Frequency Effects on Eddy Covariance Fluxes under the Influence of a Low-Level Jet

Thara V. Prabha The University of Georgia, Griffin, Georgia

Search for other papers by Thara V. Prabha in
Current site
Google Scholar
PubMed
Close
,
Monique Y. Leclerc The University of Georgia, Griffin, Georgia

Search for other papers by Monique Y. Leclerc in
Current site
Google Scholar
PubMed
Close
,
Anandakumar Karipot The University of Georgia, Griffin, Georgia

Search for other papers by Anandakumar Karipot in
Current site
Google Scholar
PubMed
Close
, and
David Y. Hollinger U.S. Department of Agriculture Forest Service, Durham, New Hampshire

Search for other papers by David Y. Hollinger in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Turbulent bursts observed over a tall forest canopy during the initiation of a nocturnal low-level jet (LLJ) are studied with the help of wavelet analysis. The burst of turbulence is observed in response to a shear instability associated with the initiation of LLJ. Turbulent kinetic energy, momentum, and CO2-rich cold air are transferred downward by large eddies with length scales that are higher than the LLJ height. Microfronts are observed over the canopy as a secondary instability that enhances the mixing processes within and above the canopy. The scale-dependent wavelet correlation analysis reveals that countergradient fluxes result from low frequencies, whereas cogradient flux is associated with high-frequency turbulent motions. The countergradient flux is initially noted at low frequencies, and, through coherent motions, it is transferred to smaller scales with a nearly 20-min delay. The countergradient flux dominates at the initiation of the event and reduces net flux, whereas enhanced cogradient flux at the decay of the event increases the net flux. The wavelet correlation coefficient corresponding to cogradient and countergradient fluxes is applied to segregate three regions of the spectra corresponding to “turbulent,” “coherent,” and “noncoherent” large scales. These findings are used to examine the implications on eddy covariance flux measurements.

Corresponding author address: M. Y. Leclerc, Laboratory for Environmental Physics/Biometeorology Program, The University of Georgia, 1109 Experiment St., Griffin, GA 30223. Email: mleclerc@uga.edu

Abstract

Turbulent bursts observed over a tall forest canopy during the initiation of a nocturnal low-level jet (LLJ) are studied with the help of wavelet analysis. The burst of turbulence is observed in response to a shear instability associated with the initiation of LLJ. Turbulent kinetic energy, momentum, and CO2-rich cold air are transferred downward by large eddies with length scales that are higher than the LLJ height. Microfronts are observed over the canopy as a secondary instability that enhances the mixing processes within and above the canopy. The scale-dependent wavelet correlation analysis reveals that countergradient fluxes result from low frequencies, whereas cogradient flux is associated with high-frequency turbulent motions. The countergradient flux is initially noted at low frequencies, and, through coherent motions, it is transferred to smaller scales with a nearly 20-min delay. The countergradient flux dominates at the initiation of the event and reduces net flux, whereas enhanced cogradient flux at the decay of the event increases the net flux. The wavelet correlation coefficient corresponding to cogradient and countergradient fluxes is applied to segregate three regions of the spectra corresponding to “turbulent,” “coherent,” and “noncoherent” large scales. These findings are used to examine the implications on eddy covariance flux measurements.

Corresponding author address: M. Y. Leclerc, Laboratory for Environmental Physics/Biometeorology Program, The University of Georgia, 1109 Experiment St., Griffin, GA 30223. Email: mleclerc@uga.edu

Save
  • Anandakumar, K., and S. V. Kailas, 1999: Statistical discrete gust analysis of tower-based atmospheric turbulence data for aircraft response studies. Proc. Inst. Mech. Eng., 213 , G. 143162.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 2000: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30 , 113175.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., J. Finnigan, K. Wilson, K. T. Paw, and E. Falge, 2000: On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Bound.-Layer Meteor., 96 , 257291.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during Cases-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60 , 25492555.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1994: Sodar observations of the stable boundary-layer height in relation to the nocturnal low-level jet. Meteor. Z., 3 , 2934.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., R. L. Grossman, and M. Piper, 1999: Analysis of heat budget, dissipation and frontogenesis in a shallow density current. Bound.-Layer Meteor., 91 , 281306.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96 , 833850.

  • Brunet, Y., and M. R. Irvine, 2000: The control of coherent eddies in vegetation canopies: Streamwise structure spacing, canopy shear scale and atmospheric stability. Bound.-Layer Meteor., 94 , 139163.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometerology, D. H. Haugen, Ed., Amer. Meteor. Soc., 67–100.

  • Cava, D., U. Giostra, M. Siqueira, and G. Katul, 2004: Organized motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound.-Layer Meteor., 112 , 129157.

    • Search Google Scholar
    • Export Citation
  • Cava, D., S. Schipa, and U. Giostra, 2005: Investigations of low-frequency perturbations induced by a steep obstacle. Bound.-Layer Meteor., 115 , 2745.

    • Search Google Scholar
    • Export Citation
  • Chen, W. J., and Coauthors, 1999: Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biol., 5 , 4154.

    • Search Google Scholar
    • Export Citation
  • Collineau, S., and Y. Brunet, 1993: Detection of turbulent coherent motions in a forest canopy, Part I: Wavelet analysis. Bound.-Layer Meteor., 65 , 357379.

    • Search Google Scholar
    • Export Citation
  • Coulter, R. L., and J. C. Doran, 2002: Spatial and temporal occurrences of intermittent turbulence during CASES-99. Bound.-Layer Meteor., 105 , 329349.

    • Search Google Scholar
    • Export Citation
  • Corsmeier, U., N. Kalthoff, O. Kolle, M. Kotzian, and F. Fiedler, 1997: Ozone concentration jump in the stable nocturnal boundary-layer during a LLJ-event. Atmos. Environ., 31 , 19771989.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., G. Morales, E. Terradellas, and C. Yague, 2002: Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer. Bound.-Layer Meteor., 105 , 305328.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1993: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, SIAM, 357 pp.

  • Doran, J. C., 2004: Characteristics of intermittent turbulent temperature fluxes in stable conditions. Bound.-Layer Meteor., 112 , 241255.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., and J. J. Finnigan, 1993: Wave-turbulence dynamics in the stably stratified boundary-layer. J. Atmos. Sci., 50 , 18411864.

    • Search Google Scholar
    • Export Citation
  • Farge, M., 1992: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., 24 , 395457.

  • Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity wave and turbulence in the stably stratified nocturnal boundary layer. J. Atmos. Sci., 41 , 24092436.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and K. E. Moore, 1990: Mechanisms of nocturnal exchange between the rain forest and the atmosphere. J. Geophys. Res., 95 , 1683916850.

    • Search Google Scholar
    • Export Citation
  • Gao, W., and B. L. Li, 1993: Wavelet analysis of coherent structures at the atmosphere–forest interface. J. Appl. Meteor., 32 , 17171725.

    • Search Google Scholar
    • Export Citation
  • Giostra, U., D. Cava, and S. Schipa, 2002: Structure functions in a wall-turbulent shear flow. Bound.-Layer Meteor., 103 , 337359.

  • Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy, 1996: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol., 2 , 169182.

    • Search Google Scholar
    • Export Citation
  • Greco, S., and D. D. Baldocchi, 1996: Seasonal variations of CO and water vapour exchange rates over a temperate deciduous forest. Global Change Biol., 2 , 183197.

    • Search Google Scholar
    • Export Citation
  • Grossman, A., and J. Morlet, 1984: Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15 , 723736.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., S. M. Goltz, E. A. Davidson, J. T. Lee, K. Tu, and H. T. Valentine, 1999: Seasonal patterns and environmental control of carbon dioxide and water vapor exchange in an ecotonal boreal forest. Global Change Biol., 5 , 891902.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., and Coauthors, 2004: Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biol., 10 , 16891706.

    • Search Google Scholar
    • Export Citation
  • Hudgins, L., C. A. Friehe, and M. E. Mayer, 1993: Wavelet transforms and atmospheric turbulence. Phys. Rev. Lett., 71 , 32793282.

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

  • Kalthoff, N., V. Horlacher, U. Corsmeier, A. Voltz-Thomas, B. Kolahgar, H. Giess, M. Mollmann-Coers, and A. Knaps, 2000: Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res., 105 , 15851597.

    • Search Google Scholar
    • Export Citation
  • Karipot, A., and Coauthors, 2006: Nocturnal CO2 exchange over a tall forest canopy associated with intermittent low-level jet activity. Theor. Appl. Climatol., 85 , 243248.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., C. D. Geron, C. Hsieh, B. Vidakovic, and A. B. Guenther, 1998: Active turbulence and scalar transport near the forest-atmosphere interface. J. Appl. Meteor., 37 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Komori, S., and K. Nagata, 1996: Effects of molecular diffusivities on countergradient scalar and momentum transfer in strongly stable stratification. J. Fluid Mech., 326 , 205237.

    • Search Google Scholar
    • Export Citation
  • Lee, X., T. A. Black, G. denHartog, H. H. Neumann, Z. Nesic, and J. Olejnik, 1996: Carbon dioxide exchange and nocturnal processes over a mixed deciduous forest. Agric. For. Meteor., 81 , 1329.

    • Search Google Scholar
    • Export Citation
  • Lindroth, A., A. Grelle, and A. S. Morén, 1998: Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol., 4 , 443450.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105 , 351363.

  • Mallat, S., 1989: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11 , 674693.

    • Search Google Scholar
    • Export Citation
  • Mathieu, N., I. B. Strachan, M. Y. Leclerc, A. Karipot, and E. Pattey, 2005: Role of low-level jets and boundary-layer properties on the NBL budget technique. Agric. For. Meteor., 135 , 3543.

    • Search Google Scholar
    • Export Citation
  • McBean, G. A., and M. Miyake, 1972: Turbulent transfer mechanisms in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 98 , 383398.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdown of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54 , 6987.

  • Nappo, C. J., and G. Chimonas, 1992: Wave exchange between the ground surface and a boundary-layer critical level. J. Atmos. Sci., 49 , 10751091.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2002: Shear-flow instability in the stable nocturnal boundary-layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60 , 1633.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., C. A. Friehe, and J. C. Larue, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J. Atmos. Sci., 53 , 10291044.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence—Models and Methods for Engineering Applications. John Wiley and Sons, 397 pp.

    • Search Google Scholar
    • Export Citation
  • Pulido, M., and G. Chimonas, 2001: Forest canopy waves: The long-wavelength component. Bound.-Layer Meteor., 100 , 209224.

  • Qiu, J., U. K. T. Paw, and R. H. Shaw, 1995: Pseudo-wavelet analysis of turbulence patterns in three vegetation layers. Bound.-Layer Meteor., 72 , 177204.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78 , 351382.

    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., A. Strassburger, S. Emeis, and W. Kuttler, 2000: Nocturnal secondary ozone concentration maxima analysed by sodar observations and surface measurements. Atmos. Environ., 34 , 43154329.

    • Search Google Scholar
    • Export Citation
  • Saleska, S. R., and Coauthors, 2003: Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science, 302 , 15541557.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., 1985: On diffusive and dispersive fluxes in forest canopies. The Forest Atmosphere Interaction, B. A. Hutchinson and B. B. Hicks, Eds., Reidel, 407–419.

    • Search Google Scholar
    • Export Citation
  • Smedman, A. S., H. Bergström, and U. Högström, 1995: Spectra, variances and length scales in a marine stable boundary layer dominated by a low-level jet. Bound.-Layer Meteor., 76 , 211232.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105 , 199219.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110 , 255279.

    • Search Google Scholar
    • Export Citation
  • Terradellas, E., G. Morales, J. Cuxart, and C. Yagüe, 2001: Wavelet methods: Application to the study of the stable atmospheric boundary-layer under non-stationary conditions. Dyn. Atmos. Oceans, 34 , 225244.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Thomas, C., and T. Foken, 2005: Detection of long-term coherent exchange over spruce forest. Theor. Appl. Climatol., 80 , 91104.

  • Thorpe, A. J., and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103 , 633653.

  • Turner, B., M. Y. Leclerc, M. Gauthier, K. Moore, and D. Fitzjarrald, 1994: Identification of turbulence structures above a forest canopy using the wavelet transform. J. Geophys. Res., 99 , 19191926.

    • Search Google Scholar
    • Export Citation
  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26 , 439442.

  • Wu, Y., and S. Raman, 1998: The summertime Great Plains low-level jet and the effect of its origin on moisture transport. Bound.-Layer Meteor., 88 , 445466.

    • Search Google Scholar
    • Export Citation
  • Yamada, M., and K. Ohkitani, 1991: An identification of energy cascade in turbulence by orthonormal wavelet analysis. Prog. Theor. Phys., 86 , 799815.

    • Search Google Scholar
    • Export Citation
  • Yee, E., R. Chan, P. R. Kosteniuk, C. A. Biltoft, and J. F. Bowers, 1996: Multi-scaling properties of concentration fluctuations in dispersing plumes revealed using an orthonormal wavelet decomposition. Bound.-Layer Meteor., 77 , 173207.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 669 436 163
PDF Downloads 217 48 4