Comparison of Efficient Explicit Schemes for Shallow-Water Equations—Characteristics-Based Fractional-Step Method and Multimoment Eulerian Scheme

Yohsuke Imai Global Scientific Information and Computing Center, Tokyo Institute of Technology, Tokyo, Japan

Search for other papers by Yohsuke Imai in
Current site
Google Scholar
PubMed
Close
,
Takayuki Aoki Global Scientific Information and Computing Center, Tokyo Institute of Technology, Tokyo, Japan

Search for other papers by Takayuki Aoki in
Current site
Google Scholar
PubMed
Close
, and
Magdi Shoucri Institute de Recherche d’Hydro-Québec, Varennes, Quebec, Canada

Search for other papers by Magdi Shoucri in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Two explicit schemes for the numerical solution of the shallow-water equations are examined. The directional-splitting fractional-step method permits relatively large time steps without an iterative process by using a treatment based on the characteristics of the governing equations. The interpolated differential operator (IDO) scheme has fourth-order accuracy in time and space by using a Hermite interpolation function covering local domains, and accurate results are obtained with coarse meshes. It is shown that the two schemes are very efficient for hydrostatic meteorological models from the viewpoints of numerical accuracy and central processing unit time, and the fact that they are explicit makes them suitable for computers with parallel architecture.

Corresponding author address: Mr. Yohsuke Imai, Global Scientific Information and Computing Center, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, 152-8550 Tokyo, Japan. Email: yimai@sim.gsic.titech.ac.jp

Abstract

Two explicit schemes for the numerical solution of the shallow-water equations are examined. The directional-splitting fractional-step method permits relatively large time steps without an iterative process by using a treatment based on the characteristics of the governing equations. The interpolated differential operator (IDO) scheme has fourth-order accuracy in time and space by using a Hermite interpolation function covering local domains, and accurate results are obtained with coarse meshes. It is shown that the two schemes are very efficient for hydrostatic meteorological models from the viewpoints of numerical accuracy and central processing unit time, and the fact that they are explicit makes them suitable for computers with parallel architecture.

Corresponding author address: Mr. Yohsuke Imai, Global Scientific Information and Computing Center, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, 152-8550 Tokyo, Japan. Email: yimai@sim.gsic.titech.ac.jp

Save
  • Aoki, T., 1997: Interpolated Differential Operator (IDO) scheme for solving partial differential equations. Comput. Phys. Commun., 102 , 132146.

    • Search Google Scholar
    • Export Citation
  • Aoki, T., 2001: 3D simulation for falling papers. Comput. Phys. Commun., 142 , 326329.

  • Bates, J. R., 1984: An efficient semi-Lagrangian and alternating direction implicit method for integrating the shallow water equations. Mon. Wea. Rev., 112 , 20332047.

    • Search Google Scholar
    • Export Citation
  • Bates, J. R., and A. McDonald, 1982: Multiply-upstream, semi-Lagrangian advective schemes: Analysis and application to a multi-level primitive equation model. Mon. Wea. Rev., 110 , 18311842.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, and Y. Chartier, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125 , 23822415.

    • Search Google Scholar
    • Export Citation
  • Imai, Y., and T. Aoki, 2006a: Stable coupling between vector and scalar variables for the IDO scheme on collocated grids. J. Comput. Phys., 215 , 8197.

    • Search Google Scholar
    • Export Citation
  • Imai, Y., and T. Aoki, 2006b: Accuracy study of the IDO scheme by Fourier analysis. J. Comput. Phys., 217 , 453472.

  • Kato, K., T. Aoki, S. Kubota, and M. Yoshida, 2006: A numerical scheme for strong blast wave driven by explosion. Int. J. Numer. Methods Fluids, 51 , 13351353.

    • Search Google Scholar
    • Export Citation
  • McDonald, A., 1986: A semi-Lagrangian and semi-implicit two time-level integration scheme. Mon. Wea. Rev., 114 , 824830.

  • Peng, X., F. Xiao, T. Yabe, and K. Tani, 2003: Implementation of the CIP as the advection solver in the MM5. Mon. Wea. Rev., 131 , 12561271.

    • Search Google Scholar
    • Export Citation
  • Pohn, E., M. Shoucri, and G. Kamelander, 2005: Eulerian Vlasov codes. Comput. Phys. Commun., 166 , 8193.

  • Robert, A. J., 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.–Ocean, 19 , 3546.

  • Robert, A. J., 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan, 60 , 319325.

    • Search Google Scholar
    • Export Citation
  • Robert, A., J. Henderson, and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev., 100 , 329335.

    • Search Google Scholar
    • Export Citation
  • Robert, A., T. L. Yee, and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multi-level atmospheric models. Mon. Wea. Rev., 113 , 388394.

    • Search Google Scholar
    • Export Citation
  • Shoucri, M., 1986: Numerical solution of the shallow water equations. J. Comput. Phys., 63 , 240245.

  • Shoucri, M., 2004: The application of a fractional step method for the numerical solution of the shallow water equations. Comput. Phys. Commun., 164 , 396401.

    • Search Google Scholar
    • Export Citation
  • Shoucri, M., 2006: Numerical solution of the shallow water equations with a fractional step method. Comput. Phys. Commun., 176 , 2332.

    • Search Google Scholar
    • Export Citation
  • Shoucri, M., A. Qaddouri, M. Tanguay, and J. Coté, 2002: A fractional step method for the numerical solution of the shallow water equations. Extended Abstracts, 2002 Workshop on the Solution of Partial Differential Equations on the Sphere, Toronto, ON, Canada, The Fields Institute, 16.

  • Staniforth, A., and C. Temperton, 1986: Semi-implicit semi-Lagrangian integration schemes for a barotropic finite-element regional model. Mon. Wea. Rev., 114 , 20782090.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119 , 22062223.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., and A. J. Robert, 1986: Elimination of the Helmholtz equation associated with the semi-implicit scheme in a grid point model of the shallow water equations. Mon. Wea. Rev., 114 , 21542162.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., A. J. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118 , 19701980.

    • Search Google Scholar
    • Export Citation
  • Temperton, C., and A. Staniforth, 1987: An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quart. J. Roy. Meteor. Soc., 113 , 10251039.

    • Search Google Scholar
    • Export Citation
  • Xiao, F., and A. Ikebata, 2003: An efficient method for capturing free boundaries in multi-fluid simulations. Int. J. Numer. Fluids, 42 , 187210.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., and T. Aoki, 1991: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun., 66 , 219232.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., T. Ishikawa, P. Y. Wang, T. Aoki, Y. Kadota, and F. Ikeda, 1991: A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two- and three-dimensional solver. Comput. Phys. Commun., 66 , 233242.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., F. Xiao, and T. Utsumi, 2001: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 169 , 556593.

    • Search Google Scholar
    • Export Citation
  • Yoshida, H., T. Aoki, and T. Utsumi, 2004: Improvement of accuracy and stability in numerically solving hyperbolic equations by IDO (interpolated differential operator) scheme with Runge-Kutta time integration. Electron. Commun. Japan, 87 , 3342.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 387 217 86
PDF Downloads 181 38 7