Parameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation

Caroline Forster Norwegian Institute for Air Research (NILU), Kjeller, Norway

Search for other papers by Caroline Forster in
Current site
Google Scholar
PubMed
Close
,
Andreas Stohl Norwegian Institute for Air Research (NILU), Kjeller, Norway

Search for other papers by Andreas Stohl in
Current site
Google Scholar
PubMed
Close
, and
Petra Seibert Institute of Meteorology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria

Search for other papers by Petra Seibert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and Živković-Rothman and the Lagrangian particle dispersion model “FLEXPART” based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The convection scheme relies on the ECMWF grid-scale temperature and humidity and provides a matrix necessary for the vertical convective particle displacement. The benefits of the revised interface relative to its previous version are presented. It is shown that, apart from minor fluctuations caused by the stochastic convective redistribution of the particles, the well-mixed criterion is fulfilled in simulations that include convection. Although for technical reasons the calculation of the displacement matrix differs somewhat between the forward and the backward simulations in time, the mean relative difference between the convective mass fluxes in forward and backward simulations is below 3% and can therefore be tolerated. A comparison of the convective mass fluxes and precipitation rates with those archived in the 40-yr ECMWF Reanalysis (ERA-40) data reveals that the convection scheme in FLEXPART produces upward mass fluxes and precipitation rates that are generally smaller by about 25% than those from ERA-40. This result is interpreted as positive, because precipitation is known to be overestimated by the ECMWF model. Tracer transport simulations with and without convection are compared with surface and aircraft measurements from two tracer experiments and to 222Rn measurements from two aircraft campaigns. At the surface no substantial differences between the model runs with and without convection are found, but at higher altitudes the model runs with convection produced better agreement with the measurements in most of the cases and indifferent results in the others. However, for the tracer experiments only few measurements at higher altitudes are available, and for the aircraft campaigns the 222Rn emissions are highly uncertain. Other datasets better suitable for the validation of convective transport in models are not available. Thus, there is a clear need for reliable datasets suitable to validate vertical transport in models.

* Current affiliation: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Weßling, Germany

Corresponding author address: Caroline Forster, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Postfach 1116, D-82230 Weßling, Germany. Email: caroline.forster@dlr.de

Abstract

This paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and Živković-Rothman and the Lagrangian particle dispersion model “FLEXPART” based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The convection scheme relies on the ECMWF grid-scale temperature and humidity and provides a matrix necessary for the vertical convective particle displacement. The benefits of the revised interface relative to its previous version are presented. It is shown that, apart from minor fluctuations caused by the stochastic convective redistribution of the particles, the well-mixed criterion is fulfilled in simulations that include convection. Although for technical reasons the calculation of the displacement matrix differs somewhat between the forward and the backward simulations in time, the mean relative difference between the convective mass fluxes in forward and backward simulations is below 3% and can therefore be tolerated. A comparison of the convective mass fluxes and precipitation rates with those archived in the 40-yr ECMWF Reanalysis (ERA-40) data reveals that the convection scheme in FLEXPART produces upward mass fluxes and precipitation rates that are generally smaller by about 25% than those from ERA-40. This result is interpreted as positive, because precipitation is known to be overestimated by the ECMWF model. Tracer transport simulations with and without convection are compared with surface and aircraft measurements from two tracer experiments and to 222Rn measurements from two aircraft campaigns. At the surface no substantial differences between the model runs with and without convection are found, but at higher altitudes the model runs with convection produced better agreement with the measurements in most of the cases and indifferent results in the others. However, for the tracer experiments only few measurements at higher altitudes are available, and for the aircraft campaigns the 222Rn emissions are highly uncertain. Other datasets better suitable for the validation of convective transport in models are not available. Thus, there is a clear need for reliable datasets suitable to validate vertical transport in models.

* Current affiliation: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Weßling, Germany

Corresponding author address: Caroline Forster, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Postfach 1116, D-82230 Weßling, Germany. Email: caroline.forster@dlr.de

Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21 , 6875.

  • Collins, W. J., R. D. Derwent, C. E. Johnson, and D. S. Stevenson, 2002: A comparison of two schemes for the convective transport of chemical species in a Lagrangian global chemistry model. Quart. J. Roy. Meteor. Soc., 128 , 9911009.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1992: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Cotton, W. R., R. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls, 1995: Cloud venting—A review and some new global annual estimates. Earth-Sci. Rev., 39 , 169206.

    • Search Google Scholar
    • Export Citation
  • Dentener, F., J. Feichter, and A. Jeuken, 1999: Simulation of the transport of Rn222 using on-line and off-line global models at different horizontal resolutions: A detailed comparison with measurements. Tellus, 51B , 573602.

    • Search Google Scholar
    • Export Citation
  • Dörr, H., 1984: Investigation of the gas and water budgets in the unsaturated soil layer using carbon dioxide and radon 222 (in German). Ph.D. thesis, Universität Heidelberg, 87 pp.

  • Draxler, R. R., R. Dietz, R. J. Lagomarsino, and G. Start, 1991: Across North America Tracer Experiment (ANATEX) sampling and analysis. Atmos. Environ., 25A , 28152836.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., and D. J. Raymond, Eds. 1993: The Representation of Cumulus Convection in Numerical ModelsMeteor. Monogr., No. 46, Amer. Meteor. Soc., 246 pp.

  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56 , 17661782.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Fehsenfeld, F. C., P. Daum, W. R. Leaitch, M. Trainer, D. D. Parrish, and G. Hbler, 1996: Transport and processing of O3 and O3 precursors over the North Atlantic: An overview of the 1993 North Atlantic Regional Experiment (NARE) summer intensive. J. Geophys. Res., 101 , 2887728892.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., and P. J. Crutzen, 1990: Parameterization of vertical tracer transport due to deep cumulus convection in a global transport model and its evaluation with 222Radon measurements. Tellus, 42B , 100117.

    • Search Google Scholar
    • Export Citation
  • Ferber, G. J., J. L. Heffter, R. R. Draxler, R. J. Lagomarisino, F. L. Thomas, R. N. Dietz, and C. M. Benkwitz, 1986: Cross-Appalachian Tracer Experiment (CAPTEX 83). Final report, NOAA Air Research Laboratories Tech. Memo. ERL ARL-142, 60 pp.

  • Forster, C., and Coauthors, 2001: Transport of boreal forest fire emissions from Canada to Europe. J. Geophys. Res., 106 , 2288722906.

    • Search Google Scholar
    • Export Citation
  • Forster, C., and Coauthors, 2004: Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2k2) measurement campaign. J. Geophys. Res., 109 .D07S92, doi:10.1029/2003JD003589.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1978: The life cycle of GATE convective systems. J. Atmos. Sci., 35 , 12561264.

  • Gregory, D., J-J. Morcrette, C. Jacob, A. C. M. Beljaars, and T. Stickdale, 2000: Revision of convection, radiation, and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126 , 16851710.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and Coauthors, 1997: Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived species. J. Geophys. Res., 102 , 59535970.

    • Search Google Scholar
    • Export Citation
  • James, P., A. Stohl, C. Forster, S. Eckhardt, P. Seibert, and A. Frank, 2003a: A 15-year climatology of stratosphere–troposphere exchange with a Lagrangian particle dispersion model: 1. Methodology and validation. J. Geophys. Res., 108 .8519, doi:10.1029/2002JD002637.

    • Search Google Scholar
    • Export Citation
  • James, P., A. Stohl, C. Forster, S. Eckhardt, P. Seibert, and A. Frank, 2003b: A 15-year climatology of stratosphere—troposphere exchange with a Lagrangian particle dispersion model: 2. Mean climate, seasonal and interannual variability. J. Geophys. Res., 108 .8522, doi:10.1029/2002JD002639.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., P. Berrisford, B. Hoskins, A. Simmmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 Atlas. Vol. 19, ERA-40 Project Report Series, ECMWF, 191 pp.

  • Kritz, M. A., S. W. Rosner, and D. Z. Stockwell, 1998: Validation of an off-line three-dimensional chemical transport model using observed radon profiles 1. Observations. J. Geophys. Res., 103 , 84258432.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and P. J. Crutzen, 1994: Role of deep cloud convection in the ozone budget of the troposphere. Science, 264 , 17591761.

    • Search Google Scholar
    • Export Citation
  • Lin, X., F. Zaucker, E-Y. Hsie, M. Trainer, and S. A. McKeen, 1996: Radon 222 simulations as a test of a three-dimensional regional transprort model. J. Geophys. Res., 101 , 2916529177.

    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., M. F. Hibberd, and P. J. Hurley, 1996: Comparison of closure schemes used to specify the velocity PDF in Lagrangian stochastic dispersion models for convective conditions. Atmos. Environ., 30 , 14071418.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 361385.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department Tech. Memo. 206, 41 pp.

  • Olivié, D. J. L., P. F. J. van Velthoven, A. C. M. Beljaars, and H. M. Kelder, 2004: Comparison between archived and off-line diagnosed convective mass fluxes in the chemistry transport model TM3. J. Geophys. Res., 109 .D11303, doi:10.1029/2003JD004036.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int., 4 , 187198.

  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26 , 340.

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modelling of the tropical cyclone. J. Meteor. Soc. Japan, 60 , 369379.

  • Raymond, D. J., 1995: Regulation of moist convection over the West Pacific warm pool. J. Atmos. Sci., 52 , 39453959.

  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43 , 27082718.

  • Reithmeier, C., and R. Sausen, 2002: ATTILA: Atmospheric tracer transport in a Lagrangian model. Tellus, 54B , 278299.

  • Riehl, H., and J. S. Malkus, 1959: On the heat balance of the equatorial through zone. Geophysica, 6 , 503538.

  • Seibert, P., and A. Frank, 2004: Source–receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys., 4 , 5163.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., B. Krüger, and A. Frank, 2001: Parametrisation of convective mixing in a Lagrangian particle dispersion model. Proc. Fifth GLOREAM Workshop, Wengen, Switzerland, EUROTRAC-2, 8 pp.

  • Smith, R. K., 1997a: On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123 , 407418.

  • Smith, R. K., 1997b: The physics and the parameterization of moist atmospheric convection. Series C: Mathematical and Physical Sciences, R. K. Smith, Ed., NATO ASI Series, Vol. 5, Kluwer Academic in cooperation with NATO Scientific Affairs Division, 498 pp.

    • Search Google Scholar
    • Export Citation
  • Spichtinger, N., M. Wenig, P. James, T. Wagner, U. Platt, and A. Stohl, 2001: Satellite detection of a continental-scale plume of nitrogen oxides from boreal forest fires. Geophys. Res. Lett., 28 , 45794582.

    • Search Google Scholar
    • Export Citation
  • Stockwell, D. Z., M. A. Kritz, M. P. Chipperfield, and J. A. Pyle, 1998: Validation of an off-line three-dimensional chemical transport model using observed radon profiles 2. Model results. J. Geophys. Res., 103 , 84338445.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and D. J. Thomson, 1999: A density correction for Lagrangian particle dispersion models. Bound.-Layer Meteor., 90 , 155167.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and T. Trickl, 1999: A textbook example of long-range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe. J. Geophys. Res., 104 , 3044530462.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in Central Europe. J. Hydrometeor., 5 , 656678.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., M. Hittenberger, and G. Wotawa, 1998: Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data. Atmos. Environ., 24 , 42454264.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and C. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5 , 24612474.

    • Search Google Scholar
    • Export Citation
  • Stunder, B. J. B., and R. R. Draxler, 1989: Across North America Tracer Experiment (ANATEX). Vol. Aircraft-based sampling. NOAA Tech. Memo. ERL ARL-177, 29 pp.

  • Telford, J. W., 1975: Turbulence, entrainment and mixing in cloud dynamics. Pure Appl. Geophys., 113 , 10671084.

  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories inturbulent flows. J. Fluid Mech., 180 , 529556.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of cumulus clouds in large-scale models. Mon. Wea. Rev., 121 , 30403061.

  • Turekian, K. K., Y. Nozaki, and L. Benninger, 1977: Cheochemistry of atmospheric radon and radon product. Annu. Rev. Earth Planet. Sci., 5 , 227255.

    • Search Google Scholar
    • Export Citation
  • Wotawa, G., and M. Trainer, 2000: The influence of Canadian forest fires on pollutant concentrations in the United States. Science, 288 , 324328.

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., P. H. Daum, U. Wetterauer, C. Berkowitz, B. Kromer, and W. S. Broecker, 1996: Atmospheric 222Rn measurements during the 1993 NARE Intensive. J. Geophys. Res., 101 , 2914929164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 743 169 7
PDF Downloads 419 123 5