Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part II: Algorithm Improvement and Heating Estimates over Tropical Ocean Regions

Shoichi Shige Department of Aerospace Engineering, Osaka Prefecture University, Osaka, Japan

Search for other papers by Shoichi Shige in
Current site
Google Scholar
PubMed
Close
,
Yukari N. Takayabu Center for Climate System Research, University of Tokyo, and Institute of Observational Research for Global Change, Japan Agency for Marine–Earth Science and Technology, Kanagawa, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
,
Wei-Kuo Tao Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Wei-Kuo Tao in
Current site
Google Scholar
PubMed
Close
, and
Chung-Lin Shie Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Chung-Lin Shie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spectral latent heating (SLH) algorithm was developed for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in Part I of this study. The method uses PR information [precipitation-top height (PTH), precipitation rates at the surface and melting level, and rain type] to select heating profiles from lookup tables. Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) utilizing a cloud-resolving model (CRM). To assess its global application to TRMM PR data, the universality of the lookup tables from the TOGA COARE simulations is examined in this paper. Heating profiles are reconstructed from CRM-simulated parameters (i.e., PTH, precipitation rates at the surface and melting level, and rain type) and are compared with the true CRM-simulated heating profiles, which are computed directly by the model thermodynamic equation. CRM-simulated data from the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), South China Sea Monsoon Experiment (SCSMEX), and Kwajalein Experiment (KWAJEX) are used as a consistency check. The consistency check reveals discrepancies between the SLH-reconstructed and Goddard Cumulus Ensemble (GCE)-simulated heating above the melting level in the convective region and at the melting level in the stratiform region that are attributable to the TOGA COARE table. Discrepancies in the convective region are due to differences in the vertical distribution of deep convective heating due to the relative importance of liquid and ice water processes, which varies from case to case. Discrepancies in the stratiform region are due to differences in the level separating upper-level heating and lower-level cooling. Based on these results, improvements were made to the SLH algorithm. Convective heating retrieval is now separated into upper-level heating due to ice processes and lower-level heating due to liquid water processes. In the stratiform region, the heating profile is shifted up or down by matching the melting level in the TOGA COARE lookup table with the observed one. Consistency checks indicate the revised SLH algorithm performs much better for both the convective and stratiform components than does the original one. The revised SLH algorithm was applied to PR data, and the results were compared with heating profiles derived diagnostically from SCSMEX sounding data. Key features of the vertical profiles agree well—in particular, the level of maximum heating. The revised SLH algorithm was also applied to PR data for February 1998 and February 1999. The results are compared with heating profiles derived by the convective–stratiform heating (CSH) algorithm. Because observed information on precipitation depth is used in addition to precipitation type and intensity, differences between shallow and deep convection are more distinct in the SLH algorithm in comparison with the CSH algorithm.

Corresponding author address: Dr. Shoichi Shige, Department of Aerospace Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan. Email: shige@aero.osakafu-u.ac.jp

Abstract

The spectral latent heating (SLH) algorithm was developed for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in Part I of this study. The method uses PR information [precipitation-top height (PTH), precipitation rates at the surface and melting level, and rain type] to select heating profiles from lookup tables. Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) utilizing a cloud-resolving model (CRM). To assess its global application to TRMM PR data, the universality of the lookup tables from the TOGA COARE simulations is examined in this paper. Heating profiles are reconstructed from CRM-simulated parameters (i.e., PTH, precipitation rates at the surface and melting level, and rain type) and are compared with the true CRM-simulated heating profiles, which are computed directly by the model thermodynamic equation. CRM-simulated data from the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), South China Sea Monsoon Experiment (SCSMEX), and Kwajalein Experiment (KWAJEX) are used as a consistency check. The consistency check reveals discrepancies between the SLH-reconstructed and Goddard Cumulus Ensemble (GCE)-simulated heating above the melting level in the convective region and at the melting level in the stratiform region that are attributable to the TOGA COARE table. Discrepancies in the convective region are due to differences in the vertical distribution of deep convective heating due to the relative importance of liquid and ice water processes, which varies from case to case. Discrepancies in the stratiform region are due to differences in the level separating upper-level heating and lower-level cooling. Based on these results, improvements were made to the SLH algorithm. Convective heating retrieval is now separated into upper-level heating due to ice processes and lower-level heating due to liquid water processes. In the stratiform region, the heating profile is shifted up or down by matching the melting level in the TOGA COARE lookup table with the observed one. Consistency checks indicate the revised SLH algorithm performs much better for both the convective and stratiform components than does the original one. The revised SLH algorithm was applied to PR data, and the results were compared with heating profiles derived diagnostically from SCSMEX sounding data. Key features of the vertical profiles agree well—in particular, the level of maximum heating. The revised SLH algorithm was also applied to PR data for February 1998 and February 1999. The results are compared with heating profiles derived by the convective–stratiform heating (CSH) algorithm. Because observed information on precipitation depth is used in addition to precipitation type and intensity, differences between shallow and deep convection are more distinct in the SLH algorithm in comparison with the CSH algorithm.

Corresponding author address: Dr. Shoichi Shige, Department of Aerospace Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan. Email: shige@aero.osakafu-u.ac.jp

Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The atmospheric radiation measurement program. Phys. Today, 56 , 3844.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and R. A. Houze Jr., 1973: A technique for computing vertical transports by precipitating cumuli. J. Atmos. Sci., 30 , 11001111.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., H. Kumagai, T. Iguchi, and K. Okamoto, 1996: Development of an algorithm for classifying rain types (in Japanese). J. Commun. Res. Lab., 42 , 325337.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. Eighth URSI Commission F Open Symp., Aveiro, Portugal, Union Radio-Scientifigue Internationale, 143–146.

  • Braun, S. A., and R. A. Houze Jr., 1995: Melting and freezing in a mesoscale convective system. Quart. J. Roy. Meteor. Soc., 121 , 5577.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1996: The heat budget of a midlatitude squall line and implications for potential vorticity production. J. Atmos. Sci., 53 , 12171240.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. P., and R. A. Houze Jr., 1980: Sensitivity of diagnosed convective fluxes to model assumptions. J. Atmos. Sci., 37 , 774783.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., and S. A. Rutledge, 1998a: The vertical structure of TOGA COARE convection. Part I: Radar echo distribution. J. Atmos. Sci., 55 , 27302747.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., and S. A. Rutledge, 1998b: The vertical structure of TOGA COARE convection. Part II: Modulating influences and implications for diabatic heating. J. Atmos. Sci., 55 , 27482762.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45 , 416433.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., B. Geerts, and L. Tian, 2000: TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements. J. Appl. Meteor., 39 , 20802102.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 529 pp.

  • Houze Jr., R. A., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30 , 11121123.

  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and C. A. Leary, 1976: Comparison of convective mass and heat transports in tropical easterly waves computed by two methods. J. Atmos. Sci., 33 , 424429.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Houze Jr., R. A., C-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37 , 754773.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112 , 15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and D. C. Kriete, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110 , 18981911.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40 , 21382146.

  • Johnson, R. H., and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54 , 20202034.

  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80 , 561578.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. H. Ciesielski, and K. A. Hart, 1996: Tropical inversion near the 0°C level. J. Atmos. Sci., 53 , 18381855.

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. M. Wakimoto, 1991: Kinematic, dynamic, and thermodynamic analyses of a weakly sheared severe thunderstorm over northern Alabama. Mon. Wea. Rev., 119 , 262297.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39 , 102116.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42 , 505527.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81 , 12611270.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36 , 669679.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1980: The contribution of mesoscale motions to the mass and heat fluxes of an intense tropical convective system. J. Atmos. Sci., 37 , 784796.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996a: Heating, moistening and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996b: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 695715.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112 , 966989.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Magagi, R., and A. P. Barros, 2004: Estimation of latent heating of rainfall during the onset of the Indian monsoon using TRMM PR and radiosonde data. J. Appl. Meteor., 43 , 328349.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., 2001: Water’s two height scales: The moist adiabat and the radiative troposphere. Quart. J. Roy. Meteor. Soc., 127 , 22532266.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., P. E. Ciesielski, and R. H. Johnson, 2003: Sampling errors in rawinsonde-array budgets. J. Atmos. Sci., 60 , 26972714.

  • Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42 , 107126.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1972: Energy budget of wave disturbances over the Marshall Island during the years of 1956 and 1958. J. Meteor. Soc. Japan, 50 , 7184.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102 , 1728.

  • Okamoto, K., 2003: A short history of the TRMM precipitation radar. Cloud Systems, Hurricanes, and the Tropical Rainfall Measurement Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 187–195.

  • Olson, W. S., C. D. Kummerow, Y. Hong, and W-K. Tao, 1999: Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38 , 633664.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 35663586.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28 , 11171133.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003a: Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003b: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42 , 15191524.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Shie, C-L., W-K. Tao, J. Simpson, and C-H. Sui, 2003: Quasi-equilibrium states in the Tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate, 16 , 817833.

    • Search Google Scholar
    • Export Citation
  • Shige, S., and T. Satomura, 2000: The gravity wave response in the troposphere around deep convection. J. Meteor. Soc. Japan, 78 , 789801.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Shige, S., H. Sasaki, K. Okamoto, and T. Iguchi, 2006: Validation of rainfall estimates from the TRMM precipitation radar and microwave imager using a radiative transfer model: 1. Comparison of the version-5 and -6 products. Geophys. Res. Lett., 33 .L13803, doi:10.1029/2006GL026350.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed satellite Tropical Rainfall Measuring Mission (TRMM). Bull. Amer. Meteor. Soc., 69 , 278295.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Soong, S-T., and Y. Ogura, 1973: A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30 , 879893.

    • Search Google Scholar
    • Export Citation
  • Soong, S-T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37 , 20352050.

  • Soong, S-T., and W-K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37 , 20162034.

  • Soong, S-T., and W-K. Tao, 1984: A numerical study of the vertical transport of momentum in a tropical rainband. J. Atmos. Sci., 41 , 10491061.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., K-M. Lau, W-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51 , 711728.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2002: Spectral representation of rain features and diurnal variations observed with TRMM PR over the equatorial area. Geophys. Res. Lett., 29 .1584, doi:10.1029/2001GL014113.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K-M. Lau, and C-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124 , 18921913.

  • Tao, W-K., 2003: Goddard Cumulus Ensemble (GCE) model: Application for understanding precipitation processes. Cloud Systems, Hurricanes, and the Tropical Rainfall Measurement Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 107–137.

  • Tao, W-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 3572.

  • Tao, W-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117 , 231235.

  • Tao, W-K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71 , 685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. Ferrier, and M-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes. J. Atmos. Sci., 53 , 26242651.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, W. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78 , 333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40 , 957982.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2003a: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., C-L. Shie, J. Simpson, S. Braun, R. H. Johnson, and P. E. Ciesielski, 2003b: Convective systems over the South China Sea: Cloud-resolving model simulations. J. Atmos. Sci., 60 , 29292956.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., D. Johnson, C-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61 , 24052423.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Thompson, R. M. J., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 39–62.

  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11 , 463482.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999a: Four-dimensional structure of monthly latent heating derived from SSM/I satellite measurements. J. Climate, 12 , 10161037.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999b: Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large scale Q2 estimates. J. Atmos. Oceanic Technol., 16 , 633655.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2000: Vertical structure and transient behavior of convective–stratiform heating in TOGA COARE from combined satellite–sounding analysis. J. Appl. Meteor., 39 , 14911513.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1994: GEWEX-Related Asian Monsoon Experiment (GAME). Adv. Space Res., 14 , 161165.

  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44 , 385415.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17 , 133139.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 1998: The 600–800-mb minimum in tropical cloudiness observed during TOGA COARE. J. Atmos. Sci., 55 , 22202228.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 622 180 7
PDF Downloads 486 151 4