Abstract
A scaling analysis is conducted to explore the dependence of sea-breeze speed and inland occurrence in the presence of opposing winds on a set of dynamical parameters. The overall aim of the analysis is to develop an index for sea-breeze occurrence in the face of opposing winds, similar to the Biggs and Graves lake-breeze index. Most studies separate sea-breeze speed and sea-breeze inland occurrence or, at best, link the two in linear analyses. This work analyzes the output of a nonlinear numerical mesoscale model (in idealized simulations) using scaling methods commonly applied in observational studies. It is found that the scaled sea-breeze speed, in response to increasing magnitude of opposing wind, shows two distinct phases: a phase of increasing speed while the sea breeze progresses inland and a phase of sharply decreasing speed when the sea breeze is no longer detected inland. The analysis also allows the development of an index for sea-breeze inland occurrence. This index is an improvement over existing analyses through the use of nonlinear scaling and the use of surface heat flux as opposed to simpler land–sea temperature contrasts.
Corresponding author address: A. Porson, Department of Meteorology, University of Reading, P.O. Box 243, RG6 6BB Reading, United Kingdom. Email: a.n.f.porson@reading.ac.uk