Formulation of an Index for Sea Breezes in Opposing Winds

A. Porson Institut d’Astronomie et de Géophysique Georges Lemaître, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by A. Porson in
Current site
Google Scholar
PubMed
Close
,
D. G. Steyn Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by D. G. Steyn in
Current site
Google Scholar
PubMed
Close
, and
G. Schayes Institut d’Astronomie et de Géophysique Georges Lemaître, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by G. Schayes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A scaling analysis is conducted to explore the dependence of sea-breeze speed and inland occurrence in the presence of opposing winds on a set of dynamical parameters. The overall aim of the analysis is to develop an index for sea-breeze occurrence in the face of opposing winds, similar to the Biggs and Graves lake-breeze index. Most studies separate sea-breeze speed and sea-breeze inland occurrence or, at best, link the two in linear analyses. This work analyzes the output of a nonlinear numerical mesoscale model (in idealized simulations) using scaling methods commonly applied in observational studies. It is found that the scaled sea-breeze speed, in response to increasing magnitude of opposing wind, shows two distinct phases: a phase of increasing speed while the sea breeze progresses inland and a phase of sharply decreasing speed when the sea breeze is no longer detected inland. The analysis also allows the development of an index for sea-breeze inland occurrence. This index is an improvement over existing analyses through the use of nonlinear scaling and the use of surface heat flux as opposed to simpler land–sea temperature contrasts.

Corresponding author address: A. Porson, Department of Meteorology, University of Reading, P.O. Box 243, RG6 6BB Reading, United Kingdom. Email: a.n.f.porson@reading.ac.uk

Abstract

A scaling analysis is conducted to explore the dependence of sea-breeze speed and inland occurrence in the presence of opposing winds on a set of dynamical parameters. The overall aim of the analysis is to develop an index for sea-breeze occurrence in the face of opposing winds, similar to the Biggs and Graves lake-breeze index. Most studies separate sea-breeze speed and sea-breeze inland occurrence or, at best, link the two in linear analyses. This work analyzes the output of a nonlinear numerical mesoscale model (in idealized simulations) using scaling methods commonly applied in observational studies. It is found that the scaled sea-breeze speed, in response to increasing magnitude of opposing wind, shows two distinct phases: a phase of increasing speed while the sea breeze progresses inland and a phase of sharply decreasing speed when the sea breeze is no longer detected inland. The analysis also allows the development of an index for sea-breeze inland occurrence. This index is an improvement over existing analyses through the use of nonlinear scaling and the use of surface heat flux as opposed to simpler land–sea temperature contrasts.

Corresponding author address: A. Porson, Department of Meteorology, University of Reading, P.O. Box 243, RG6 6BB Reading, United Kingdom. Email: a.n.f.porson@reading.ac.uk

Save
  • Arritt, R., 1987: The effect of water surface temperature on lake breezes and thermal internal boundary layers. Bound.-Layer Meteor., 40 , 101125.

    • Search Google Scholar
    • Export Citation
  • Arritt, R., 1989: Numerical modelling on the offshore extent of sea breezes. Quart. J. Roy. Meteor. Soc., 115 , 547570.

  • Arritt, R., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32 , 116125.

  • Asimakopoulos, D. N., C. G. Helmis, K. H. Papadopoulos, J. A. Kalgiros, P. Kassomenos, and M. Petrakis, 1999: Inland propagation of sea breeze under offshore wind. Meteor. Atmos. Phys., 70 , 97110.

    • Search Google Scholar
    • Export Citation
  • Biggs, W. G., and M. E. Graves, 1962: A lake breeze index. J. Appl. Meteor., 1 , 474480.

  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117 , 18721890.

    • Search Google Scholar
    • Export Citation
  • Deardoff, J., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891904.

    • Search Google Scholar
    • Export Citation
  • Finkele, K., 1998: Inland offshore propagation speeds of a sea breeze from simulations and measurements. Bound.-Layer Meteor., 87 , 307329.

    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., S. Raman, and D. D. S. Niyogi, 2004: Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Bound.-Layer Meteor., 111 , 275300.

    • Search Google Scholar
    • Export Citation
  • Laird, N., D. A. R. Kristovich, X-Z. Liang, R. W. Arritt, and K. Labas, 2001: Lake Michigan lake breezes: Climatology, local forcing, and synoptic environment. J. Appl. Meteor., 40 , 409424.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41 .1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Physick, W. L., 1980: Numerical experiments on the inland penetration of the sea breeze. Quart. J. Roy. Meteor. Soc., 106 , 735746.

  • Pielke, R. A., and M. Segal, 1986: Mesoscale circulations forced by differential terrain heating. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 516–548.

    • Search Google Scholar
    • Export Citation
  • Porson, A., D. G. Steyn, and G. Schayes, 2007a: Sea-breeze scaling from numerical model simulations, Part I: Pure sea breezes. Bound.-Layer Meteor., 122 , 1729.

    • Search Google Scholar
    • Export Citation
  • Porson, A., D. G. Steyn, and G. Schayes, 2007b: Sea-breeze scaling from numerical model simulations, Part II: Interaction between sea breezes and slope flows. Bound.-Layer Meteor., 122 , 3141.

    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., and A. Garder, 1988: A spatial filter for use in finite area calculations. Mon. Wea. Rev., 116 , 209222.

  • Schayes, G., P. Thunis, and R. Bornstein, 1996: Topographic vorticity-mode mesoscale-β (TVM) model. Part I: Formulation. J. Appl. Meteor., 35 , 18151823.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., and R. E. Britter, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106 , 485500.

  • Steyn, D. G., 1998: Scaling the vertical structure of sea breezes. Bound.-Layer Meteor., 86 , 505524.

  • Steyn, D. G., 2003: Scaling the vertical structure of sea breezes revisited. Bound.-Layer Meteor., 107 , 177188.

  • Thunis, P., and A. Clappier, 2000: Formulation and evaluation of a nonhydrostatic mesoscale vorticity model (TVM). Mon. Wea. Rev., 128 , 32363251.

    • Search Google Scholar
    • Export Citation
  • Tijm, A. B. C., 1999: Sea-breeze studies. Ph.D. thesis, Universiteit Utrecht, 155 pp.

  • Tijm, A. B. C., A. J. van Delden, and A. A. M. Holtslag, 1999: The inland penetration of sea breezes. Contrib. Atmos. Phys., 72 , 317328.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 1974: Sea breeze theory and applications. J. Atmos. Sci., 31 , 20122026.

  • Wichink Kruit, R. J., A. A. M. Holtslag, and A. B. C. Tijm, 2004: Scaling of the sea-breeze strength with observations in the Netherlands. Bound.-Layer Meteor., 112 , 369380.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 703 314 115
PDF Downloads 348 79 5