A Comparison of Continuous Soil Moisture Simulations Using Different Soil Hydraulic Parameterizations for a Site in Germany

Gerd Schädler Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe, Karlsruhe, Germany

Search for other papers by Gerd Schädler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Continuous time series of soil water content over a period of more than 9 months for a midlatitude sandy loam soil covered by grass are calculated with the Campbell and the van Genuchten soil hydraulic functions and the Clapp–Hornberger, Cosby et al., and Rawls–Brakensiek parameter sets. The results are compared with soil water content observed at several soil depths, and the water balance components are evaluated. The Campbell soil hydraulic functions are often used by meteorologists, whereas the van Genuchten functions are widespread among hydrologists. The simulations are performed with the “VEG3D” soil–vegetation model in stand-alone mode forced by on-site meteorological observations. The soil water content and meteorological observations were obtained within the Regional Climate Project (REKLIP) at a site in the Rhine valley in southern Germany with 10-min temporal resolution. Apart from the different soil hydraulic functions and parameter sets, the effects of different lower boundary conditions and initializations on the simulations are compared in terms of statistical quantities like mean error, bias, correlation coefficient, and least squares fit. Large differences between the various combinations are found. For the situation considered in this paper, the van Genuchten–Clapp–Hornberger, the Campbell–Cosby et al., and the van Genuchten–Rawls–Brakensiek combinations give the best overall agreement with the observations.

Corresponding author address: Dr. Gerd Schädler, Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe, Germany. Email: gerd.schaedler@imk.fzk.de

Abstract

Continuous time series of soil water content over a period of more than 9 months for a midlatitude sandy loam soil covered by grass are calculated with the Campbell and the van Genuchten soil hydraulic functions and the Clapp–Hornberger, Cosby et al., and Rawls–Brakensiek parameter sets. The results are compared with soil water content observed at several soil depths, and the water balance components are evaluated. The Campbell soil hydraulic functions are often used by meteorologists, whereas the van Genuchten functions are widespread among hydrologists. The simulations are performed with the “VEG3D” soil–vegetation model in stand-alone mode forced by on-site meteorological observations. The soil water content and meteorological observations were obtained within the Regional Climate Project (REKLIP) at a site in the Rhine valley in southern Germany with 10-min temporal resolution. Apart from the different soil hydraulic functions and parameter sets, the effects of different lower boundary conditions and initializations on the simulations are compared in terms of statistical quantities like mean error, bias, correlation coefficient, and least squares fit. Large differences between the various combinations are found. For the situation considered in this paper, the van Genuchten–Clapp–Hornberger, the Campbell–Cosby et al., and the van Genuchten–Rawls–Brakensiek combinations give the best overall agreement with the observations.

Corresponding author address: Dr. Gerd Schädler, Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe, Germany. Email: gerd.schaedler@imk.fzk.de

Save
  • Braun, F. J., and G. Schädler, 2005: Comparison of soil hydraulic parameterizations for mesoscale meteorological models. J. Appl. Meteor., 44 , 11161132.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere. D. Reidel, 299 pp.

  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117 , 311314.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Search Google Scholar
    • Export Citation
  • Cuenca, R. H., M. Ek, and L. Mahrt, 1996: Impact of soil water property parameterization on atmospheric boundary layer simulation. J. Geophys. Res., 101D , 72697277.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84 , 10131023.

  • de Vries, D. A., 1958: Simultaneous transfer of heat and moisture in porous media. Trans. Amer. Geophys. Union, 39 , 909916.

  • Ek, M., and R. H. Cuenca, 1994: Variation in soil parameters: Implications for modeling surface fluxes and atmospheric boundary-layer development. Bound.-Layer Meteor., 70 , 369383.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105 , 1186511877.

    • Search Google Scholar
    • Export Citation
  • Fuentes, U., and D. Heimann, 2000: An improved statistical-dynamical downscaling scheme and its application to the alpine precipitation climatology. Theor. Appl. Climatol., 65 , 119135.

    • Search Google Scholar
    • Export Citation
  • Hauck, C., and Coauthors, 2005: Ground-based electrical and dielectrical methods to determine the spatial and temporal variability of soil moisture – The project MESMERISE. Geophys. Res. Abstracts, 7 , 10369.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., A. Simmons, S. Uppala, and M. Fuentes, 2004: The ERA-40 archive. ERA-40 Project Rep. Series 17, ECMWF, 31 pp.

  • Kalthoff, N., F. Fiedler, M. Kohler, O. Kolle, H. Mayer, and A. Wenzel, 1999: Analysis of energy balance components as a function of orography and land use and comparison of results with the distribution of variables influencing local climate. Theor. Appl. Climatol., 62 , 6584.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • McCord, J. T., 1991: Application of second-type boundaries in unsaturated flow modeling. Water Resour. Res., 27 , 32573260.

  • Mölders, N., U. Haferkorn, J. Döring, and G. Kramm, 2003: Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS)—Part II: Evaluation, sensitivity, and uncertainty. Meteor. Atmos. Phys., 84 , 137156.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., E. Blackburn, X. Liang, and E. F. Wood, 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55 , 12091224.

    • Search Google Scholar
    • Export Citation
  • Philip, J. R., 1957: Evaporation, and moisture and heat fields in the soil. J. Meteor., 14 , 354366.

  • Philip, J. R., and D. A. de Vries, 1957: Moisture in porous materials under temperature gradients. Trans. Amer. Geophys. Soc., 18 , 222232.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing. Cambridge University Press, 992 pp.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, W. B. Rossow, and A. Robock, 2005: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements. J. Geophys. Res., 110 .D07110, doi:10.1029/2004JD005087.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., and D. L. Brakensiek, 1982: Estimating soil water retention from soil properties. J. Irrig. Drain. Div. Amer. Soc. Civ. Eng., 108 , 166171.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., L. R. Ahuja, D. L. Brakensiek, and A. Shirmohammadi, 1992: Infiltration and soil water movement. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 5.1–5.51.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berd, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5 , 430442.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rubin, Y., and S. Hubbard, 2005: Hydrogeophysics. Springer, 532 pp.

  • Schädler, G., N. Kalthoff, and F. Fiedler, 1990: Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Beitr. Phys. Atmos., 63 , 2. 85100.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., P. Gross, and C. Simmer, 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3 , 505523.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., and P. Irannejad, 1999: On the choice of soil hydraulic models in land-surface schemes. Bound.-Layer Meteor., 90 , 83115.

  • Sun, W-Y., and M. G. Bosilovich, 1996: Planetary boundary layer and surface layer sensitivity to land surface parameters. Bound.-Layer Meteor., 77 , 353378.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44 , 892898.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., A. Robock, N. A. Speranskaya, and A. Schlosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , 71637174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1632 918 63
PDF Downloads 185 53 6