• Bullock, O. R., and K. A. Brehme, 2002: Atmospheric mercury simulation using the CMAQ model: Formulation description and analysis of wet deposition results. Atmos. Environ., 36 , 21352146.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Byun, D. W., and R. L. Dennis, 1995: Design artifacts in Eulerian air quality models: Evaluation of the effects of layer thickness and vertical profile correction on surface ozone concentrations. Atmos. Environ., 29 , 105126.

    • Search Google Scholar
    • Export Citation
  • Byun, D. W., and J. K. S. Ching, 1999: Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. U.S. Environmental Protection Agency Scientific Doc. EPA/600/R-99/030, 706 pp.

  • Calvert, J. G., and S. E. Lindberg, 2005: Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmos. Environ., 39 , 33553367.

    • Search Google Scholar
    • Export Citation
  • Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res., 92 , 1468114700.

    • Search Google Scholar
    • Export Citation
  • Cohen, M., and Coauthors, 2004: Modeling the atmospheric transport and deposition of mercury to the Great Lakes. Environ. Res., 95 , 247265.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54 , 174201.

    • Search Google Scholar
    • Export Citation
  • Dennis, R. L., J. N. McHenry, W. R. Barchet, F. S. Binkowski, and D. W. Byun, 1993: Correcting RADM’s sulfate underprediction: Discovery and correction of model errors and testing the corrections through comparisons against field data. Atmos. Environ., 26A , 975997.

    • Search Google Scholar
    • Export Citation
  • Edgerton, E. S., J. Jansen, and B. E. Hartsell, 2004: Speciated Hg measurements at a rural site near Atlanta, GA USA. RMZ Mater. Geoenviron., 51 , 1539.

    • Search Google Scholar
    • Export Citation
  • EPA, 2005: Air quality modeling: Technical support document for the final Clean Air Mercury Rule: Air quality modeling. Office of Air Quality Planning and Standards, 22 pp.

  • Eswaran, S., and H. G. Stenger, 2005: Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energy Fuels, 19 , 23282334.

    • Search Google Scholar
    • Export Citation
  • Gårdfeldt, K., and M. Jonsson, 2003: Is bimolecular reduction of Hg(II)-complexes possible in aqueous systems of environmental importance? J. Phys. Chem., 107 , 44784482.

    • Search Google Scholar
    • Export Citation
  • Gery, M. W., G. Z. Whitten, J. P. Killus, and M. C. Dodge, 1989: A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res., 94 , 1292512956.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

  • Hertel, O., R. Berkowicz, J. Christensen, and O. Hov, 1993: Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ., 27A , 25912611.

    • Search Google Scholar
    • Export Citation
  • Irving, P. M., 1991: Emissions, Atmospheric Processes, and Deposition. Vol. 1, Acidic Deposition: State of Science and Technology, National Acid Precipitation Assessment Program, 1760 pp.

    • Search Google Scholar
    • Export Citation
  • Karamchandani, P., C. Seigneur, and Y. Zhang, 2002: Review of air quality models for acid deposition. U.S. Environmental Protection Agency Tech. Doc. EPA-430R-02-001, 183 pp.

  • Lin, X., and Y. Tao, 2003: A numerical modeling study on regional mercury budget for North America. Atmos. Chem. Phys., 3 , 535548.

  • Lindberg, S. E., and W. J. Stratton, 1998: Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Environ. Sci. Technol., 32 , 4957.

    • Search Google Scholar
    • Export Citation
  • Lindqvist, O., and H. Rodhe, 1985: Atmospheric mercury: A review. Tellus, 37B , 136159.

  • Lohman, K., C. Seigneur, E. Edgerton, and J. Jansen, 2006: Modeling mercury in power plant plumes. Environ. Sci. Technol., 40 , 38483854.

    • Search Google Scholar
    • Export Citation
  • NADP-MDN, cited. 2006: MDN objectives. Mercury Deposition Network: An NAPD Network. [Available online at http://nadp.sws.uiuc.edu/mdn.].

  • NADP-NTN, cited. 2006: NTN sites. [Available online at http://nadp.sws.uiuc.edu.].

  • Niksa, S., and N. Fujiwara, 2005a: The impact of wet FGD scrubbing on Hg emissions from coal-fired power stations. J. Air Waste Manage. Assoc., 55 , 970977.

    • Search Google Scholar
    • Export Citation
  • Niksa, S., and N. Fujiwara, 2005b: A predictive mechanism for mercury oxidation on selective reduction catalysts under coal-derived flue gas. J. Air Waste Manage. Assoc., 55 , 18661875.

    • Search Google Scholar
    • Export Citation
  • Pai, P., P. Karamchandani, and C. Seigneur, 1997: Simulation of the regional atmospheric transport and fate of mercury using a comprehensive Eulerian model. Atmos. Environ., 31 , 27172732.

    • Search Google Scholar
    • Export Citation
  • Pai, P., D. Niemi, and B. Powers, 2000: A North American inventory of anthropogenic mercury emissions. Fuel Process. Technol., 65–66 , 101115.

    • Search Google Scholar
    • Export Citation
  • Pavlish, J. H., S. E. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, 2003: Status review of mercury control options for coal-fired power plants. Fuel Process. Technol., 82 , 89165.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., A. Xiu, P. L. Finkelstein, and J. F. Clarke, 1997: Evaluation of a coupled land-surface and dry deposition model through comparison to field measurements of surface heat, moisture, and ozone fluxes. Proc. 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 478–479.

  • Poissant, L., M. Pilote, X. Xu, H. Zhang, and C. Beauvais, 2004: Atmospheric mercury speciation and deposition in the Bay St. François wetlands. J. Geophys. Res., 109 .D11301, doi:10.1029/2003JD004364.

    • Search Google Scholar
    • Export Citation
  • Prestbo, E. M., and Coauthors, 2004: Interconversion of emitted atmospheric mercury species in coal-fired power plant plumes. RMZ Mater. Geoenviron., 51 , 17321733.

    • Search Google Scholar
    • Export Citation
  • Pun, B. K., C. Seigneur, and E. Knipping, 2004: Optimizing secondary organic aerosol representation in particulate matter air quality models. Extended Abstract, Air & Waste Management Association Visibility Specialty Conf.—Regional and Global Perspectives on Haze: Causes, Consequences and Controversies, Asheville, NC, Air and Waste Management Association, Paper No. 14.

  • Richardson, C., T. Machalek, S. Miller, C. Dene, and R. Chang, 2002: Effect of NOx control processes on mercury speciation in utility flue gas. J. Air Waste Manage. Assoc., 52 , 941947.

    • Search Google Scholar
    • Export Citation
  • Ryaboshapko, A., and Coauthors, 2002: Comparison of mercury chemistry models. Atmos. Environ., 36 , 38813898.

  • Sanemasa, I., 1975: The solubility of elemental mercury vapor in water. Bull. Chem. Soc. Japan, 48 , 17951798.

  • Seigneur, C., and Coauthors, 2000: Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility. J. Air Waste Manage. Assoc., 50 , 588599.

    • Search Google Scholar
    • Export Citation
  • Seigneur, C., P. Karamchandani, K. Vijayaraghavan, R-L. Shia, and L. Levin, 2003: On the effect of spatial resolution on atmospheric mercury modeling. Sci. Total Environ., 304 , 7381.

    • Search Google Scholar
    • Export Citation
  • Seigneur, C., K. Vijayaraghavan, K. Lohman, P. Karamchandani, and C. Scott, 2004: Global source attribution for mercury deposition in the United States. Environ. Sci. Technol., 38 , 555569.

    • Search Google Scholar
    • Export Citation
  • Seigneur, C., K. Vijayaraghavan, and K. Lohman, 2006: Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions. J. Geophys. Res., 111 .D22306, doi:10.1029/2005JD006780.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics. John Wiley and Sons, 1326 pp.

  • Senior, C. L., 2006: Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants. J. Air Waste Manage. Assoc., 56 , 2331.

    • Search Google Scholar
    • Export Citation
  • Senior, C. L., A. F. Sarofim, T. Zeng, J. J. Helble, and R. Mamani-Paco, 2000: Gas-phase transformations of mercury in coal-fired power plants. Fuel Process. Technol., 63 , 197213.

    • Search Google Scholar
    • Export Citation
  • Venkatram, A., and J. Pleim, 1999: The electrical analogy does not apply to modeling dry deposition of particles. Atmos. Environ., 33 , 30753076.

    • Search Google Scholar
    • Export Citation
  • Vijayaraghavan, K., C. Seigneur, P. Karamchandani, K. Lohman, and S-Y. Chen, 2005: Modeling of atmospheric mercury deposition in the United States. Proc. NADP 2005 Technical Committee Meeting, Jackson, WY, National Atmospheric Deposition Program, p. 62.

  • Walcek, C. J., and G. R. Taylor, 1986: A theoretical method for computing vertical distribution of acidity and sulfate production within cumulus clouds. J. Atmos. Sci., 43 , 339355.

    • Search Google Scholar
    • Export Citation
  • Xu, X., X. Yang, D. Miller, J. J. Heible, and R. J. Carley, 2000: A regional scale modeling study of atmospheric transport and transformation of mercury, 1. Model development and evaluation. Atmos. Environ., 34 , 49334944.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2004: Development and application of the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID). J. Geophys. Res., 109 .D01202, doi:10.1029/2003JD003501.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Development and Application of a Multipollutant Model for Atmospheric Mercury Deposition

View More View Less
  • 1 Atmospheric and Environmental Research, Inc., San Ramon, California
Restricted access

Abstract

A multipollutant model, the Community Multiscale Air Quality model paired with the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (CMAQ-MADRID), is extended to include a comprehensive treatment of mercury processes and is applied to the simulation of the atmospheric deposition of sulfate and mercury over the United States during 1996. Model performance is evaluated first by comparison with annual sulfate wet deposition data from the National Atmospheric Deposition Program’s National Trends Network; the coefficient of determination r2 is 0.77, and the model normalized error and bias are 53% and −8%, respectively. When actual precipitation data are used to scale the deposition fluxes, r2 improves to 0.91 and the error and bias change to 42% and −41%, respectively. The scaled results underscore a tendency of the model to underestimate sulfate wet deposition. Model performance for mercury wet deposition is then evaluated by comparison with data from the Mercury Deposition Network. For annual mercury wet deposition, r2 is 0.28 and the normalized error and bias are 81% and 73%, respectively, when the modeled precipitation data are used. Model performance improves when actual precipitation data are used to scale deposition fluxes: r2 increases to 0.41 and the error and bias decrease to 40% and 29%, respectively. The model reproduces the spatial pattern of sulfate wet deposition adequately with an increasing gradient from the upper Midwest to the Northeast, that is, from upwind to downwind of large sulfur dioxide sources in the Ohio River Valley. However, the model tends to overestimate mercury wet deposition in the Northeast downwind of these sources that also emit significant amounts of mercury. This “Pennsylvania anomaly” may be due to a partial misrepresentation of the mercury reduction–oxidation cycle, uncertainties in the dry deposition of divalent gaseous mercury HgII, incorrect speciation of mercury emissions, and/or uncharacterized emissions in the upper Midwest.

Corresponding author address: Krish Vijayaraghavan, Atmospheric and Environmental Research, Inc., 2682 Bishop Dr., Suite 120, San Ramon, CA 94583. Email: krish@aer.com

This article included in the NOAA/EPA Golden Jubilee special collection.

Abstract

A multipollutant model, the Community Multiscale Air Quality model paired with the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (CMAQ-MADRID), is extended to include a comprehensive treatment of mercury processes and is applied to the simulation of the atmospheric deposition of sulfate and mercury over the United States during 1996. Model performance is evaluated first by comparison with annual sulfate wet deposition data from the National Atmospheric Deposition Program’s National Trends Network; the coefficient of determination r2 is 0.77, and the model normalized error and bias are 53% and −8%, respectively. When actual precipitation data are used to scale the deposition fluxes, r2 improves to 0.91 and the error and bias change to 42% and −41%, respectively. The scaled results underscore a tendency of the model to underestimate sulfate wet deposition. Model performance for mercury wet deposition is then evaluated by comparison with data from the Mercury Deposition Network. For annual mercury wet deposition, r2 is 0.28 and the normalized error and bias are 81% and 73%, respectively, when the modeled precipitation data are used. Model performance improves when actual precipitation data are used to scale deposition fluxes: r2 increases to 0.41 and the error and bias decrease to 40% and 29%, respectively. The model reproduces the spatial pattern of sulfate wet deposition adequately with an increasing gradient from the upper Midwest to the Northeast, that is, from upwind to downwind of large sulfur dioxide sources in the Ohio River Valley. However, the model tends to overestimate mercury wet deposition in the Northeast downwind of these sources that also emit significant amounts of mercury. This “Pennsylvania anomaly” may be due to a partial misrepresentation of the mercury reduction–oxidation cycle, uncertainties in the dry deposition of divalent gaseous mercury HgII, incorrect speciation of mercury emissions, and/or uncharacterized emissions in the upper Midwest.

Corresponding author address: Krish Vijayaraghavan, Atmospheric and Environmental Research, Inc., 2682 Bishop Dr., Suite 120, San Ramon, CA 94583. Email: krish@aer.com

This article included in the NOAA/EPA Golden Jubilee special collection.

Save