• Ayotte, K. W., and Coauthors, 1996: An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Bound.-Layer Meteor., 79 , 131175.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1978: Modeling pollutant transfer during daytime convection. Preprints. Fourth Symp. on Atmospheric Turbulence, Diffusion, and Air Quality, Reno, NV, Amer. Meteor. Soc., 443–447.

    • Search Google Scholar
    • Export Citation
  • Byun, D., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev., 59 , 5177.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23 , 503506.

  • Deardorff, J. W., 1972: Theoretical expression for the counter-gradient vertical heat flux. J. Geophys. Res., 77 , 59005904.

  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7 , 363372.

  • Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note TN-398+STR, 138 pp.

  • Holtslag, A. A. M., and C-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48 , 16901698.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., E. I. F. De Bruijn, and H-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118 , 15611575.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., F. Couvreux, and L. Menut, 2002: Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59 , 11051123.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46 , 13961409.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26A , 965981.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2000: Quasi-steady analysis of a PBL model with an eddy-diffusivity profile and nonlocal fluxes. Mon. Wea. Rev., 128 , 824836.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41 , 33513367.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2006: Single column modeling of the diurnal cycle based on CASES99 data—GABLS second intercomparison project. Preprints, 17th Symp. on Boundary Layers and Turbulence, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 8.1.

  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 82
PDF Downloads 40 40 40

A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing

View More View Less
  • 1 Atmospheric Sciences Modeling Division,* Air Resources Laboratory, National Oceanic and Atmospheric Administration, Research Triangle Park, North Carolina
Restricted access

Abstract

The modeling of the atmospheric boundary layer during convective conditions has long been a major source of uncertainty in the numerical modeling of meteorological conditions and air quality. Much of the difficulty stems from the large range of turbulent scales that are effective in the convective boundary layer (CBL). Both small-scale turbulence that is subgrid in most mesoscale grid models and large-scale turbulence extending to the depth of the CBL are important for the vertical transport of atmospheric properties and chemical species. Eddy diffusion schemes assume that all of the turbulence is subgrid and therefore cannot realistically simulate convective conditions. Simple nonlocal closure PBL models, such as the Blackadar convective model that has been a mainstay PBL option in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) for many years and the original asymmetric convective model (ACM), also an option in MM5, represent large-scale transport driven by convective plumes but neglect small-scale, subgrid turbulent mixing. A new version of the ACM (ACM2) has been developed that includes the nonlocal scheme of the original ACM combined with an eddy diffusion scheme. Thus, the ACM2 is able to represent both the supergrid- and subgrid-scale components of turbulent transport in the convective boundary layer. Testing the ACM2 in one-dimensional form and comparing it with large-eddy simulations and field data from the 1999 Cooperative Atmosphere–Surface Exchange Study demonstrates that the new scheme accurately simulates PBL heights, profiles of fluxes and mean quantities, and surface-level values. The ACM2 performs equally well for both meteorological parameters (e.g., potential temperature, moisture variables, and winds) and trace chemical concentrations, which is an advantage over eddy diffusion models that include a nonlocal term in the form of a gradient adjustment.

Corresponding author address: Jonathan Pleim, Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA, Research Triangle Park, NC 27711. Email: pleim.jon@epa.gov

This article included in the NOAA/EPA Golden Jubilee special collection.

Abstract

The modeling of the atmospheric boundary layer during convective conditions has long been a major source of uncertainty in the numerical modeling of meteorological conditions and air quality. Much of the difficulty stems from the large range of turbulent scales that are effective in the convective boundary layer (CBL). Both small-scale turbulence that is subgrid in most mesoscale grid models and large-scale turbulence extending to the depth of the CBL are important for the vertical transport of atmospheric properties and chemical species. Eddy diffusion schemes assume that all of the turbulence is subgrid and therefore cannot realistically simulate convective conditions. Simple nonlocal closure PBL models, such as the Blackadar convective model that has been a mainstay PBL option in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) for many years and the original asymmetric convective model (ACM), also an option in MM5, represent large-scale transport driven by convective plumes but neglect small-scale, subgrid turbulent mixing. A new version of the ACM (ACM2) has been developed that includes the nonlocal scheme of the original ACM combined with an eddy diffusion scheme. Thus, the ACM2 is able to represent both the supergrid- and subgrid-scale components of turbulent transport in the convective boundary layer. Testing the ACM2 in one-dimensional form and comparing it with large-eddy simulations and field data from the 1999 Cooperative Atmosphere–Surface Exchange Study demonstrates that the new scheme accurately simulates PBL heights, profiles of fluxes and mean quantities, and surface-level values. The ACM2 performs equally well for both meteorological parameters (e.g., potential temperature, moisture variables, and winds) and trace chemical concentrations, which is an advantage over eddy diffusion models that include a nonlocal term in the form of a gradient adjustment.

Corresponding author address: Jonathan Pleim, Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA, Research Triangle Park, NC 27711. Email: pleim.jon@epa.gov

This article included in the NOAA/EPA Golden Jubilee special collection.

Save