• Ackerman, S., and Coauthors, cited. 1997: Discriminating clear-sky from cloud with MODIS, algorithm theoretical basis document (ATBD-MOD-06). [Available online at http://modis.gsfc.nasa.gov/data/atbd/atmos_atbd.html.].

  • Adler, R. F., , and R. A. Mack, 1984: Thunderstorm cloud height–rainfall rate relations for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23 , 280296.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27 , 3051.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , A. J. Negri, , P. R. Keehn, , and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , C. Kidd, , G. Petty, , M. Morrisey, , and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , T. Wilheit, , C. D. Kummerow, , and R. Ferraro, 2005: AMSR-E/Aqua L2B global swath rain rate/type GSFC profiling algorithm V001, May to September 2005. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/ae_rain_12b.gd.html.].

  • Arkin, P. A., , and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-84. Mon. Wea. Rev., 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., , and A. Gruber, 2001: The GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Barnes, W. L., , T. S. Pagano, , and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., , and M. J. Beaumont, 1994: Satellite rainfall monitoring: An overview. Remote Sens. Rev., 11 , 2348.

  • Bellerby, T., , M. Todd, , D. Kniveton, , and C. Kidd, 2000: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39 , 21152128.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55 , 15371557.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , M. J. Manton, , P. A. Arkin, , R. J. Allam, , C. E. Holpin, , and A. Gruber, 1996: Results from the GPCP algorithm intercomparison programme. Bull. Amer. Meteor. Soc., 77 , 28752887.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , J. E. Janowiak, , and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., 2003: Analysis of rainfall intensity field by using multi-spectral GMS imagery. Acta Meteor. Sin., 61 , 334345.

  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102 , 1671516735.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12 , 755770.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , and Q. Li, 2002: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS Special Sensor Microwave/Imager algorithm. 2. Rainfall over land. J. Geophys. Res., 107 .4680, doi:10.1029/2001JD001172.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , F. Weng, , N. C. Grody, , and L. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27 , 26692672.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the AMSU. IEEE Trans. Geosci. Remote Sens., 43 , 10361049.

    • Search Google Scholar
    • Export Citation
  • Gao, B. C., , and A. F. H. Goetz, 1990: Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. J. Geophys. Res., 95 , 35493564.

    • Search Google Scholar
    • Export Citation
  • Gao, B. C., , and Y. J. Kaufman, cited. 1998: The MODIS near-IR water vapor algorithm: Algorithm technical background document (ATBD-MOD-03). [Available online at http://modis.gsfc.nasa.gov/data/atbd/atmos_atbd.html.].

  • Gao, B. C., , A. F. H. Goetz, , and W. J. Wiscombe, 1993: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38μm water vapor band. Geophys. Res. Lett., 20 , 301304.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., , H. V. Gupta, , X. Gao, , and S. Sorooshian, 1999: Estimation of physical variables from multi-channel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , M. M. Morrissey, , D. T. Bolvin, , S. Curtis, , R. Joyce, , B. McGavock, , and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghine, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , J. E. Janowiak, , P. A. Arkin, , and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , and B. C. Gao, 1992: Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens., 30 , 871884.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , D. D. Herring, , K. J. Ranson, , and G. J. Collatz, 1998: Earth observing system AM1 mission to Earth. IEEE Trans. Geosci. Remote Sens., 36 , 10451055.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. E., , A. T. Chang, , L. Tsang, , and J. L. Foster, 2003: A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41 , 230242.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21 , 10411066.

  • Kidd, C., , D. R. Kniveton, , M. C. Todd, , and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Search Google Scholar
    • Export Citation
  • King, M. D., , and R. J. Curran, 1980: The effect of a nonuniform planetary albedo on the interpretation of Earth radiation budget observations. J. Atmos. Sci., 37 , 12621278.

    • Search Google Scholar
    • Export Citation
  • King, M. D., , Y. J. Kaufman, , W. P. Menzel, , and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30 , 127.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., , W. S. Olson, , and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard Profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lethbridge, M., 1967: Precipitation probability and satellite radiation data. Mon. Wea. Rev., 95 , 487490.

  • Mace, G. G., , Y. Zhang, , S. Platnick, , M. D. King, , P. Minnis, , and P. Yang, 2005: Evaluation of cirrus cloud properties derived from MODIS data using cloud properties derived from ground-based observations collected at the ARM SGP site. J. Appl. Meteor., 44 , 221240.

    • Search Google Scholar
    • Export Citation
  • Mark, N., , M. Todd, , M. Hulme, , and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21 , 18991922.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., , and R. R. Ferraro, 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108 .8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Miller, S. W., , P. A. Arkin, , and R. Joyce, 2001: A combined microwave/infrared rain rate algorithm. Int. J. Remote Sens., 22 , 32853307.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , T. J. Jackson, , V. Lakshmi, , T. K. Chan, , and S. V. Nghiem, 2003: Soil moisture retrieval from AMSR_E. IEEE Trans. Geosci. Remote Sens., 41 , 215229.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34 , 259283.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., 1987: The NESDIS operational convective precipitation-estimation technique. Mon. Wea. Rev., 115 , 17731792.

  • Smith, E. A., and Coauthors, 1998: Results of WetNet PIP-2 project. J. Atmos. Sci., 55 , 14831536.

  • Sorooshian, S., , K-L. Hsu, , X. Gao, , H. V. Gupta, , B. Imam, , and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., , C. Kidd, , V. Levizzani, , and F. S. Marzano, 2004: A neural networks–based fusion technique to estimate half-hourly rainfall estimates at 0.1° resolution from satellite passive microwave and infrared data. J. Appl. Meteor., 43 , 576594.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., , R. A. Scofield, , and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18831898.

    • Search Google Scholar
    • Export Citation
  • Weng, F., , L. Zhao, , R. R. Ferraro, , G. Pre, , X. Li, , and N. C. Grody, 2003: Advanced Microwave Sounding Unit (AMSU) cloud and precipitation algorithms. Radio Sci., 38 , 80688079.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., , C. D. Kummerow, , and R. R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 204214.

  • Yang, S., 2004: Precipitation and latent heating estimation from passive microwave satellite measurements: A review. Observations, Theory, and Modeling of the Atmospheric and Oceanic Variability. World Scientific Series on Meteorology of East Asia, Vol. 3, World Scientific, 484–500.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and E. A. Smith, 2005: Resolving SSM/I-ship radar discrepancies from AIP-3. Adv. Atmos. Sci., 22 , 903914.

  • Yang, S., , W. S. Olson, , J-J. Wang, , T. L. Bell, , E. A. Smith, , and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45 , 721739.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 16
PDF Downloads 37 37 5

A MODIS Dual Spectral Rain Algorithm

View More View Less
  • 1 Division of Remote Sensing Applications, National Meteorological Center, China Meteorological Administration, Beijing, China
  • 2 School of Computational Sciences, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) dual spectral rain algorithm (MODRA) is developed for rain retrievals over the northern midlatitudes. The reflectance of the MODIS water vapor absorption channel at 1.38 μm (R1.38 μm) has a potential to represent the cloud-top height displayed by the brightness temperature (TB) of the MODIS channel at 11 μm, because of an excellent negative relationship (correlation coefficient ≤−0.9) between R1.38 μm and TB11 μm for optically thick clouds with reflectance (R0.65 μm) greater than 0.75. With a training rainfall dataset from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) aboard the same Aqua satellite platform, two MODIS channels (R1.38 μm and R0.65 μm) are applied to form multiregression curves to estimate daytime rainfall. Results demonstrate that the instantaneous rain rates from MODRA, independent AMSR-E rainfall products, and surface rain gauge measurements are consistent. This study explores a new way to estimate rainfall from MODIS water vapor and cloud channels. The resulting technique could be applied to other similar satellite instruments for rain retrievals.

Corresponding author address: Dr. Hao Yan, Division of Remote Sensing Applications, National Meteorological Center, Zhongguancun South Street #46, Haidian District, 100081, Beijing, China. Email: yanhaon@yahoo.com.cn

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) dual spectral rain algorithm (MODRA) is developed for rain retrievals over the northern midlatitudes. The reflectance of the MODIS water vapor absorption channel at 1.38 μm (R1.38 μm) has a potential to represent the cloud-top height displayed by the brightness temperature (TB) of the MODIS channel at 11 μm, because of an excellent negative relationship (correlation coefficient ≤−0.9) between R1.38 μm and TB11 μm for optically thick clouds with reflectance (R0.65 μm) greater than 0.75. With a training rainfall dataset from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) aboard the same Aqua satellite platform, two MODIS channels (R1.38 μm and R0.65 μm) are applied to form multiregression curves to estimate daytime rainfall. Results demonstrate that the instantaneous rain rates from MODRA, independent AMSR-E rainfall products, and surface rain gauge measurements are consistent. This study explores a new way to estimate rainfall from MODIS water vapor and cloud channels. The resulting technique could be applied to other similar satellite instruments for rain retrievals.

Corresponding author address: Dr. Hao Yan, Division of Remote Sensing Applications, National Meteorological Center, Zhongguancun South Street #46, Haidian District, 100081, Beijing, China. Email: yanhaon@yahoo.com.cn

Save