• Anderberg, M. R., 1973: Cluster Analysis for Applications. Academic Press, 359 pp.

  • Bärring, L., 1988: Regionalization of daily rainfall in Kenya by means of common factor analysis. J. Climatol., 8 , 371389.

  • Belserene, E. P., 1988: Rhythms of a variable star. Sky and Telescope, Vol. 76, September, p. 288.

  • Bloomfield, P., 1976: Fourier Analysis of Time Series: An Introduction. Wiley, 258 pp.

  • Blumen, W., 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 323 pp.

  • Bonell, M., and G. Sumner, 1992: Autumn and winter daily precipitation areas in Wales, 1982–1983 to 1986–1987. Int. J. Climatol., 12 , 77102.

    • Search Google Scholar
    • Export Citation
  • Cattell, R. B., 1966: The scree test for the number of factors. Multivariate Behav. Res., 1 , 245276.

  • Cheng, E. D., 1998: Macroscopic extreme wind regionalization. J. Wind Eng. Ind. Aerodyn., 77–78 , 1321.

  • Comrie, A. C., and E. C. Glenn, 1998: Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Res., 10 , 201215.

    • Search Google Scholar
    • Export Citation
  • Deeming, T. J., 1975: Fourier analysis with unequally-spaced data. Astrophys. Space Sci., 36 , 137158.

  • DeGaetano, A. T., 1997: A quality-control routine for hourly wind observations. J. Atmos. Oceanic Technol., 14 , 308317.

  • Dyer, T. G. J., 1975: The assignment of rainfall stations into homogeneous groups: An application of principal component analysis. Quart. J. Roy. Meteor. Soc., 101 , 10051013.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and M-Y. C. Fovell, 1993: Climate zones of the conterminous United States defined using cluster analysis. J. Climate, 6 , 21032135.

    • Search Google Scholar
    • Export Citation
  • Graybeal, D. Y., 2006: Relationships among daily mean and maximum wind speeds, with application to data quality assurance. Int. J. Climatol., 26 , 2943.

    • Search Google Scholar
    • Export Citation
  • Green, M., L. O. Myrup, and R. G. Flocchini, 1992: A method for classification of wind field patterns and its application to Southern California. Int. J. Climatol., 12 , 111135.

    • Search Google Scholar
    • Export Citation
  • Gregory, S., 1975: On the delimitation of regional patterns of recent climatic fluctuations. Weather, 30 , 276288.

  • Hardy, D., and J. J. Walton, 1978: Principal components analysis of vector wind measurements. J. Appl. Meteor., 17 , 11531162.

  • Johnson, S. C., 1967: Hierarchical clustering schemes. Psychometrika, 32 , 241254.

  • Kaihatu, J. M., R. A. Handler, G. O. Marmorino, and L. K. Shay, 1998: Empirical orthogonal function analysis of ocean surface currents using complex and real-vector methods. J. Atmos. Oceanic Technol., 15 , 927941.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, P., and R. O. Weber, 1996: Classification of mesoscale wind fields in the MISTRAL field experiment. J. Appl. Meteor., 35 , 19631979.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, P., and R. O. Weber, 1998: Directional correlation coefficient for channeled flow and application to wind data over complex terrain. J. Atmos. Oceanic Technol., 15 , 8997.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, P., and C. D. Whiteman, 1999: Cluster-analysis classification of wintertime wind patterns in the Grand Canyon region. J. Appl. Meteor., 38 , 11311147.

    • Search Google Scholar
    • Export Citation
  • Klink, K., and C. J. Willmott, 1989: Principal components of the surface wind field in the United States: A comparison of analyses based upon wind velocity, direction, and speed. Int. J. Climatol., 9 , 293308.

    • Search Google Scholar
    • Export Citation
  • Ludwig, F. L., J. Horel, and C. D. Whiteman, 2004: Using EOF analysis to identify important surface wind patterns in mountain valleys. J. Appl. Meteor., 43 , 969983.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and Y-H. Kuo, 1998: Regional real-time numerical weather prediction: Current status and future potential. Bull. Amer. Meteor. Soc., 79 , 253263.

    • Search Google Scholar
    • Export Citation
  • McGowan, H. A., and A. P. Sturman, 1996: Interacting multi-scale wind systems within an alpine basin, Lake Tekapo, New Zealand. Meteor. Atmos. Phys., 58 , 165177.

    • Search Google Scholar
    • Export Citation
  • Meek, D. W., and J. L. Hatfield, 1994: Data quality checking for single station meteorological databases. Agric. For. Meteor., 69 , 85109.

    • Search Google Scholar
    • Export Citation
  • Milligan, G. W., 1980: An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45 , 325342.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol., 6 , 293335.

  • Rife, D. L., C. A. Davis, Y. Liu, and T. T. Warner, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132 , 25532569.

    • Search Google Scholar
    • Export Citation
  • Romero, R., C. Ramis, J. A. Guijarro, and G. Sumner, 1999a: Daily rainfall affinity areas in Mediterranean Spain. Int. J. Climatol., 19 , 557578.

    • Search Google Scholar
    • Export Citation
  • Romero, R., G. Sumner, C. Ramis, and A. Genovés, 1999b: A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int. J. Climatol., 19 , 765785.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 Project Plan. ECMWF ERA-40 Project Rep. Series 1, Reading, United Kingdom, 63 pp.

  • Sotillo, M. G., C. Ramis, R. Romero, S. Alonso, and V. Homar, 2003: Role of orography in the spatial distribution of precipitation over the Spanish Mediterranean zone. Climate Res., 23 , 247261.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., and Coauthors, 2006: A mesoscale data analysis and downscaling method over complex terrain. Mon. Wea. Rev., 134 , 27582771.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian, 2002: A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull. Amer. Meteor. Soc., 83 , 699708.

    • Search Google Scholar
    • Export Citation
  • Stooksbury, D. E., and P. J. Michaels, 1991: Cluster analysis of southeastern U.S. climate stations. Theor. Appl. Climatol., 44 , 143150.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1995: Inconsistencies at the interface of climate impact studies and global climate research. Meteor. Z., 4 , 7280.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Weber, R. O., and P. Kaufmann, 1995: Automated classification scheme for wind fields. J. Appl. Meteor., 34 , 11331141.

  • White, D., M. Richman, and B. Yarnal, 1991: Climate regionalization and rotation of principal components. Int. J. Climatol., 11 , 125.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32 , 16691682.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2004: Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dyn., 23 , 6378.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 2 2 2

Surface Wind Regionalization in Complex Terrain

View More View Less
  • 1 División de Energías Renovables, CIEMAT, and Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, Madrid, Spain
  • | 2 Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, Madrid, Spain
  • | 3 Departamento de Física, Universidad de Murcia, Murcia, Spain
  • | 4 División de Energías Renovables, CIEMAT, Madrid, Spain
Restricted access

Abstract

Daily wind variability in the Comunidad Foral de Navarra in northern Spain was studied using wind observations at 35 locations to derive subregions with homogeneous temporal variability. Two different methodologies based on principal component analysis were used to regionalize: 1) cluster analysis and 2) the rotation of the selected principal components. Both methodologies produce similar results and lead to regions that are in general agreement with the topographic features of the terrain. The meridional wind variability is similar in all subregions, whereas zonal wind variability is responsible for differences between them. The spectral analysis of wind variability within each subregion reveals a dominant annual cycle and the varying presence of higher-frequency contributions in the subregions. The valley subregions tend to present more variability at high frequencies than do higher-altitude sites. Last, the influence of large-scale dynamics on regional wind variability is explored by studying connections between wind in each subregion and sea level pressure fields. The results of this work contribute to the characterization of wind variability in a complex terrain region and constitute a framework for the validation of mesoscale model wind simulations over the region.

Corresponding author address: J. Fidel González-Rouco, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Avd. Complutense s/n, Madrid 28040, Spain. Email: fidelgr@fis.ucm.es

Abstract

Daily wind variability in the Comunidad Foral de Navarra in northern Spain was studied using wind observations at 35 locations to derive subregions with homogeneous temporal variability. Two different methodologies based on principal component analysis were used to regionalize: 1) cluster analysis and 2) the rotation of the selected principal components. Both methodologies produce similar results and lead to regions that are in general agreement with the topographic features of the terrain. The meridional wind variability is similar in all subregions, whereas zonal wind variability is responsible for differences between them. The spectral analysis of wind variability within each subregion reveals a dominant annual cycle and the varying presence of higher-frequency contributions in the subregions. The valley subregions tend to present more variability at high frequencies than do higher-altitude sites. Last, the influence of large-scale dynamics on regional wind variability is explored by studying connections between wind in each subregion and sea level pressure fields. The results of this work contribute to the characterization of wind variability in a complex terrain region and constitute a framework for the validation of mesoscale model wind simulations over the region.

Corresponding author address: J. Fidel González-Rouco, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Avd. Complutense s/n, Madrid 28040, Spain. Email: fidelgr@fis.ucm.es

Save