• Barthazy, E., S. Göke, R. Schefold, and D. Högl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21 , 14001416.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 , 851864.

  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45 , 434454.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42 , 652660.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G-J. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekhar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Eccles, P. J., and E. A. Mueller, 1971: X-band attenuation and liquid water content estimation by a dual-wavelength radar. J. Appl. Meteor., 10 , 12521259.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., C. R. Williams, P. E. Johnston, W. L. Ecklund, R. Cifelli, A. Tokay, and D. A. Carter, 2000: Doppler radar profilers as calibration tools for scanning radars. J. Appl. Meteor., 39 , 22092222.

    • Search Google Scholar
    • Export Citation
  • Goldhirsh, J., and I. Katz, 1974: Estimation of raindrop size distribution using multiple wavelength radar systems. Radio Sci., 9 , 439446.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., S. L. Durden, and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35 , 313.

  • Haddad, Z. S., J. P. Meagher, S. L. Durden, E. A. Smith, and E. Im, 2006: Drop size ambiguities in the retrieval of precipitation profiles from dual-frequency radar measurements. J. Atmos. Sci., 63 , 204217.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., P. Amayenc, B. Nutten, and P. Waldteufel, 1984: A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. J. Atmos. Oceanic Technol., 1 , 256269.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. Brodzick, C. Schumacher, S. E. Yuter, and C. R. Williams, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43 , 11141132.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., 2005: Possible algorithms for the Dual-frequency Precipitation Radar (DPR) on the GPM core satellite. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc. 5R.4. [Available online at http://ams.confex.com/ams/pdfpapers/96470.pdf.].

  • Iguchi, T., H. Hanado, N. Takahashi, S. Kobayashi, and S. Satoh, 2003: The dual-frequency precipitation radar for the GPM core satellite. IEEE Trans. Geosci. Remote Sens., 46 , 16981700.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: A spectrograph for the automatic analysis of raindrops. Pure Appl. Geophys., 68 , 240246.

  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19 , 602617.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Kuo, K-S., E. A. Smith, Z. Haddad, E. Im, T. Iguchi, and A. Mugnai, 2004: Mathematical–physical framework for retrieval of rain DSD properties from dual-frequency Ku–Ka-band satellite radar. J. Atmos. Sci., 61 , 23492369.

    • Search Google Scholar
    • Export Citation
  • Lee, G., and I. Zawadzki, 2005: Variability of drop size distributions: Noise and noise filtering in disdrometric data. J. Appl. Meteor., 44 , 634652.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2005: A study of air/space-borne dual-wavelength radar for estimation of rain profiles. Adv. Atmos. Sci., 22 , 841851.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17 , 130139.

    • Search Google Scholar
    • Export Citation
  • Mardiana, R., T. Iguchi, and N. Takahashi, 2004: A dual-frequency rain profiling method without the use of a surface reference technique. IEEE Trans. Geosci. Remote Sens., 42 , 22142225.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Meagher, J. P., and Z. S. Haddad, 2006: To what extent can raindrop size be determined by a multiple-frequency radar? J. Appl. Meteor. Climatol., 45 , 529536.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Kozu, H. Kumagai, and W. C. Boncyk, 1992: A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean. J. Atmos. Oceanic Technol., 9 , 364382.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., H. Kumagai, J. Wang, T. Iguchi, and T. Kozu, 1997: Microphysical retrievals over stratiform rain using measurements from an airborne dual-wavelength radar-radiometer. IEEE Trans. Geosci. Remote Sens., 35 , 487506.

    • Search Google Scholar
    • Export Citation
  • Rincon, R. F., and R. H. Lang, 2002: Microwave link dual-wavelength measurements of path-average attenuation for the estimation of drop size distribution and rainfall. IEEE Trans. Geosci. Remote Sens., 40 , 760770.

    • Search Google Scholar
    • Export Citation
  • Salles, C., and J-D. Creutin, 2003: Instrumental uncertainties in ZR relationships and raindrop fall velocities. J. Appl. Meteor., 42 , 279290.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2005: On the shape–slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44 , 11461151.

  • Smith, P. L., and D. V. Kliche, 2005: The bias in moment estimators for parameters of drop size distribution functions: Sampling from exponential distributions. J. Appl. Meteor., 44 , 11951205.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., Z. Liu, and J. Joss, 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor., 32 , 12591269.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40 , 20832097.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, W. F. Krajewski, P. A. Kucera, and A. J. P. Filho, 2002: Measurements of drop size distribution in the southwestern Amazon region. J. Geophys. Res., 107 .8052, doi:10.1029/2001JD000355.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003a: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20 , 14601477.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., K. R. Wolff, P. Bashor, and O. K. Dursun, 2003b: On the measurement errors of the Joss-Waldvogel disdrometer. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., P3A.2. [Available online at http://ams.confex.com/ams/pdfpapers/64350.pdf.].

  • Tokay, A., P. G. Bashor, and K. R. Wolff, 2005: Error characteristics of rainfall measurements by collocated Joss–Waldvogel disdrometers. J. Atmos. Oceanic Technol., 22 , 513527.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37 , 912923.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37 .1024, doi:10.1029/2000RS002603.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. A. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39 , 830841.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20 , 11061119.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63 , 12731290.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Retrieval of Raindrop Size Distribution from Simulated Dual-Frequency Radar Measurements

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

Observations of raindrop size distributions (DSDs) have validated the use of three-parameter distribution functions in representing the observed spectra. However, dual-frequency radar measurements are limited to retrieving two independent parameters of the DSD, thus requiring a constraint on a three-parameter distribution. In this study, disdrometer observations from a variety of climate regions are employed to develop constraints on the gamma distribution that are optimized for dual-frequency radar rainfall retrievals. These observations are composited by reflectivity, and then gamma parameters are fit to the composites. The results show considerable variability in shape parameter between regions and within a region at different reflectivities. Most notable is that oceanic regions exhibit maxima in shape parameter at 13.6-GHz reflectivities between 40 and 50 dBZ, in contrast to continental regions. The shape parameter and slope parameter of all composite DSDs are poorly correlated. Thus, constraints of a constant shape parameter or shape parameter–slope parameter relationship are inadequate to represent the observed variability. However, the shape and slope parameters are highly correlated at a given reflectivity. Constraints of a fixed shape parameter and relationships between a shape parameter m and slope parameter Λ, both of which are given as functions of 13.6-GHz reflectivity, are applied to retrieve rain rate, liquid water content, and mean mass diameter from the composites. The m–Λ relationships perform best at high reflectivity (dBZ13.6 > 35), whereas the fixed shape parameter generally results in lower error at medium and low reflectivities (dBZ13.6 < 35). All calculations have been made under the assumption that the reflectivity measurements have been corrected for attenuation.

Corresponding author address: Ali Tokay, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: tokay@radar.gsfc.nasa.gov

Abstract

Observations of raindrop size distributions (DSDs) have validated the use of three-parameter distribution functions in representing the observed spectra. However, dual-frequency radar measurements are limited to retrieving two independent parameters of the DSD, thus requiring a constraint on a three-parameter distribution. In this study, disdrometer observations from a variety of climate regions are employed to develop constraints on the gamma distribution that are optimized for dual-frequency radar rainfall retrievals. These observations are composited by reflectivity, and then gamma parameters are fit to the composites. The results show considerable variability in shape parameter between regions and within a region at different reflectivities. Most notable is that oceanic regions exhibit maxima in shape parameter at 13.6-GHz reflectivities between 40 and 50 dBZ, in contrast to continental regions. The shape parameter and slope parameter of all composite DSDs are poorly correlated. Thus, constraints of a constant shape parameter or shape parameter–slope parameter relationship are inadequate to represent the observed variability. However, the shape and slope parameters are highly correlated at a given reflectivity. Constraints of a fixed shape parameter and relationships between a shape parameter m and slope parameter Λ, both of which are given as functions of 13.6-GHz reflectivity, are applied to retrieve rain rate, liquid water content, and mean mass diameter from the composites. The m–Λ relationships perform best at high reflectivity (dBZ13.6 > 35), whereas the fixed shape parameter generally results in lower error at medium and low reflectivities (dBZ13.6 < 35). All calculations have been made under the assumption that the reflectivity measurements have been corrected for attenuation.

Corresponding author address: Ali Tokay, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: tokay@radar.gsfc.nasa.gov

Save